K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2017

Áp dụng BĐT Bunhiacopski ta có:

\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2=3^2=9\)

\(\Rightarrow x^2+y^2+z^2\ge3\Rightarrow A\ge3\)

Dấu "=" xảy ra khi x=y=z=1

Vậy MinA=3 khi x=y=z=1

12 tháng 1 2017

(Bạn Thắng Nguyễn, đề yêu cầu tìm \(max\) mà...)

Đây là bài bất đẳng thức khó, vì \(maxA=5\) và đẳng thức xảy ra tại \(x=0,y=1,z=2\) (chẳng có BĐT nào làm được hết).

Lời giải đây: Đặt \(A=f\left(x,y,z\right)=x^2+y^2+z^2\) (coi như đa thức 3 biến)

Trong \(x,y,z\) phải có số lớn hơn hoặc bằng 1, giả sử là \(x\). Khi đó \(y+z\le2\).

\(f\left(x,y+z,0\right)=x^2+\left(y+z\right)^2\ge x^2+y^2+z^2=f\left(x,y,z\right)\)

Mà \(f\left(x,y+z,0\right)=f\left(x,3-x,0\right)=x^2+\left(3-x\right)^2=2x^2-6x+9\)

Và biểu thức này đạt giá trị lớn nhất tại \(x=2\) (giải thích: \(2x^2-6x+9=2\left|x-\frac{3}{2}\right|^2+\frac{9}{2}\))

Nên \(f\left(x,y,z\right)\le f\left(2,1,0\right)=5\). Đẳng thức xảy ra tại \(x=2,y=1,z=0\).

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Lời giải:

Tìm min:

Áp dụng BĐT AM-GM:

$x^2+y^2+z^2\geq \frac{(x+y+z)^2}{3}=\frac{6^2}{3}=12$

Vậy $A_{\min}=12$. Giá trị này đạt tại $x=y=z=2$

--------------

Tìm max:

$A=x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=36-2(xy+yz+xz)$

Vì $x,y,z\geq 0\Rightarrow xy+yz+xz\geq 0$

$\Rightarrow A=36-2(xy+yz+xz)\leq 36$

Vậy $A_{\max}=36$. Giá trị này đạt tại $(x,y,z)=(0,0,6)$ và hoán vị.

NV
21 tháng 1 2021

\(2=x^2+y^2+z^2\ge y^2+z^2\ge2yz\Rightarrow yz\le1\)

\(P=x\left(1-yz\right)+y+z\Rightarrow P^2\le\left[x^2+\left(y+z\right)^2\right]\left[\left(1-yz\right)^2+1\right]\)

\(P^2\le\left(2+2yz\right)\left(y^2z^2-2yz+2\right)\)

\(P^2\le2\left(yz\right)^3-2\left(yz\right)^2+4=2y^2z^2\left(yz-1\right)+4\le4\)

\(\Rightarrow P\le2\)

\(P_{max}=2\) khi \(\left(x;y;z\right)=\left(0;1;1\right)\) và các hoán vị

19 tháng 5 2018

Áp dụng BĐT AM-GM cho 3 số dương a,b,c:

\(x^3+1+1\ge3\sqrt[3]{x^3.1.1}=3x\left(1\right)\)

Hoàn toàn tương tự, ta đc: \(y^3+1+1\ge3y\left(2\right)\)

Và: \(z^3+1+1\ge3z\left(3\right)\)

Cộng (1)(2)(3) VTV: \(Q+6\ge3\left(x+y+x\right)=3.3=9\)

\(\Leftrightarrow Q\ge9-6=3\Rightarrow Q_{Min}=3\)

Dấu "=" xảy ra khi x=y=z=1

NV
6 tháng 7 2020

\(S>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\Rightarrow S>1\)

\(S< \frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}\Rightarrow S< 2\)

\(\Rightarrow1< S< 2\)

21 tháng 12 2015

mình làm phần tử đại diện thôi nha

áp dụng bđt cô-si ta đc:

ta có \(\frac{x^2}{\sqrt{x^2-1}}=\frac{x^3}{x\sqrt{x^2-1}}\ge\frac{x^3}{\frac{x^2+x^2-1}{2}}=2x^3\)

Đến đây đc rồi nhỉ?