Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^3}{1000}=\frac{y^3}{3375}=\frac{z^3}{1728}\Rightarrow\left(\frac{x}{10}\right)^3=\left(\frac{y}{15}\right)^3=\left(\frac{z}{12}\right)^3\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x-y+z}{10-15+12}\left(\text{t/c dãy tỉ số = nhau}\right)=\frac{-49}{7}=-7\)
\(\Rightarrow\frac{x}{10}=-7\Rightarrow x=-7.10=-70\)
\(\Rightarrow\frac{y}{15}=-7\Rightarrow y=-7.15=-105\)
\(\Rightarrow\frac{z}{12}=-7\Rightarrow z=-7.12=-84\)
Vậy x+y+z=(-70)+(-105)+(-84)=-259.
\(\frac{x^3}{1000}=\frac{y^3}{3375}=\frac{z^3}{1728}=>\left(\frac{x}{10}\right)^3=\left(\frac{y}{15}\right)^3=\left(\frac{z}{12}\right)^3=>\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x-y+z}{10-15+12}=-\frac{49}{7}=-7\)
=>x=-70;y=-105;z=-84
=>x+y+z=-259
tick tớ nhé
Bài 3:
a, (\(x\)+y+z)2
=((\(x\)+y) +z)2
= (\(x\) + y)2 + 2(\(x\) + y)z + z2
= \(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2
=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz
b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))
= \(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3
Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé
(x - 1)/2 = (y - 2)/3 = (z - 3)/4
=> (x - 1)/2 = 2(y - 2)/6 = 3(z - 3)/12 = [(x - 1) - 2(y - 2) + 3(z - 3)]/(2 - 6 + 12) = [(x - 2y + 3z) - 6]/8
Vì x - 2y + 3z = 14
=> (x - 1)/2 = (y - 2)/3 = (z - 3)/4 = (14 - 6)/8 = 1
=> x = 3, y = 5, z = 7
Vay khi : x+y+z=3+5+7=15
x-1/2 = y-2/3 = z-3/4 =2x- 2/4 = 3y - 6/9 = 2x + 3y -z - 5/ 9 = 10
=> x = 21 , y = 32 , z = 43
= > x + y + z = 96
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}\frac{3y-6}{9}=\frac{2x+3y-z-5}{9}=10\)
Ta có: \(\frac{3x}{30}=\frac{2y}{30}=\frac{5z}{30}=\frac{x}{10}=\frac{y}{15}=\frac{z}{6}=\frac{x+z-y}{10+6-15}=\frac{32}{1}=32\)
\(\frac{x}{10}=32\Rightarrow x=320;\frac{y}{15}=32\Rightarrow y=480;\frac{z}{6}=32\Rightarrow z=192\)
\(\Rightarrow x+y-z=320+480-192=608\)
\(\frac{x^3}{1000}=\frac{y^3}{3375}=\frac{z^3}{1728}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x-y+z}{10-15+12}=\frac{-49}{7}=-7\)
\(\Rightarrow\) x = - 70; y = - 105; z = - 84
\(\Rightarrow\) x + y + z = - 259