K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2020

Tìm Min của \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\) với x + y + z = 2 ?

Áp dụng bất đẳng thức Bunhiacopxki ta có:

\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{2^2}{2\cdot2}=1\)

Dấu "=" xảy ra khi: \(x=y=z=\frac{2}{3}\)

7 tháng 10 2020

Hoặc có thể làm theo cách dụng Cauchy như sau

Ta có: \(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}\cdot\frac{y+z}{4}}=2\cdot\frac{x}{2}=x\)

Tương tự CM được: \(\frac{y^2}{z+x}+\frac{z+x}{4}\ge y\) ; \(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)

Cộng vế lại ta được: \(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\frac{1}{2}\left(x+y+z\right)\ge x+y+z\)

\(\Rightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{1}{2}\left(x+y+z\right)=1\)

Dấu "=" xảy ra khi: x = y = z = 2/3

8 tháng 12 2016

2

13 tháng 10 2021
Lấy 1 -1 2
28 tháng 9 2019

Ta có:\(x-y=\frac{-1}{2};y+z=\frac{2}{5};-x=\frac{-2}{3}\)

\(-x=\frac{-2}{3}\Rightarrow x=\frac{2}{3}\)

*\(x-y=\frac{1}{2}\)

\(\Rightarrow\)\(\frac{2}{3}-y=\frac{1}{2}\Rightarrow y=\frac{1}{6}\)

*\(y+z=\frac{2}{5}\)

\(\Rightarrow\frac{1}{6}+z=\frac{2}{5}\)

\(\Rightarrow z=\frac{7}{30}\)

 \(\Rightarrow x=\frac{2}{3};y=\frac{1}{6};z=\frac{7}{30}\)

Học tốt nha!!!

28 tháng 9 2019

thank you

28 tháng 10 2015

Áp dụng tính chất dãy tỉ số bằng nhau: 
(2x+1)/5=(3y-2)/7=(2x+3y-1)/12 
mà (2x+1)/5=(3y-2)/7=(2x+3y-1)/(6x) 
=> 6x=12 => x=2 
(3y-2)/7=(2x+1)/5=5/5=1 
=> (3y-2)/7=1 => y=3

24 tháng 7 2017

vì \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)\(\Rightarrow\frac{2x+1+3y-2}{5+7}\)=\(\frac{2x+3y-1}{6x}\)

\(=\frac{2x+3y-1}{12}\)=\(\frac{2x+3y-1}{6x}\)\(\Rightarrow12=6x\)

vậy x=2;y=3

x+y=5

25 tháng 12 2016

Vì x;y nguyên nên (2x-3)2 và |y-2| đều là số nguyên

Mà \(\hept{\begin{cases}\left(2x-3\right)^2\ge0\\\left|y-2\right|\ge0\end{cases}}\) nên (2x-3)2 và |y-2| là các số nguyên không âm

TH1: (2x-3)2=0 và |y-2|=1

\(\left(2x-3\right)^2=0\Leftrightarrow2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)(loại)

Ta không xét đến |y-2|=1 nữa!

TH2: (2x-3)2=1 và |y-2|=0

  • \(\left(2x-3\right)^2=1\Rightarrow\orbr{\begin{cases}2x-3=-1\\2x-3=1\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=-2\\2x=4\end{cases}\Leftrightarrow}}\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
  • \(\left|y-2\right|=0\Leftrightarrow y-2=0\Leftrightarrow y=2\)

Vậy có 2 cặp x;y thỏa mãn là .........................

25 tháng 12 2016

\(!y-2!\le1\Rightarrow1\le y\le3\Rightarrow co.the=\left\{1,2,3\right\}\)

\(!2x-3!\le1\Rightarrow1\le x\le2=>x.cothe.=\left\{1,2\right\}\)

Với x=1,2=>có y=2

với 1,3 không có x thỏa mãn

KL:

(xy)=(1,2); (2,2)

a) Ta có: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)

nên \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{2x}{3}=12\\\dfrac{3y}{4}=12\\\dfrac{4z}{5}=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=36\\3y=48\\4z=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=20\end{matrix}\right.\)

Vậy: (x,y,z)=(18;16;20)

b) Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5k\\y=3k\end{matrix}\right.\)

Ta có: \(x^2-y^2=4\)

\(\Leftrightarrow\left(5k\right)^2-\left(3k\right)^2=4\)

\(\Leftrightarrow16k^2=4\)

\(\Leftrightarrow k\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)

Trường hợp 1: \(k=\dfrac{1}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{1}{2}=\dfrac{5}{2}\\y=3k=3\cdot\dfrac{1}{2}=\dfrac{3}{2}\end{matrix}\right.\)

Trường hợp 2: \(k=-\dfrac{1}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{-1}{2}=\dfrac{-5}{2}\\y=3k=3\cdot\dfrac{-1}{2}=\dfrac{-3}{2}\end{matrix}\right.\)

Vậy: \(\left(x,y\right)\in\left\{\left(\dfrac{5}{2};\dfrac{3}{2}\right);\left(-\dfrac{5}{2};-\dfrac{3}{2}\right)\right\}\)

 

3 tháng 7 2021

a)

 

Theo tính chất của dãy tỉ số bằng nhau, ta có : 

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Suy ra : 

\(x=\dfrac{12.3}{2}=18\\ y=\dfrac{12.4}{3}=16\\ z=\dfrac{12.5}{4}=15\)

b)

\(x=\dfrac{y}{3}.5=\dfrac{5y}{3}\\ x^2-y^2=4\\ \Leftrightarrow\left(\dfrac{5y}{3}\right)^2-y^2=4\\ \Leftrightarrow\dfrac{16y^2}{9}=4\Leftrightarrow y=\pm\dfrac{3}{2} \)

Với $y = \dfrac{3}{2}$ thì $x = \dfrac{5}{2}$

Với $y = \dfrac{-3}{2}$ thì $x = \dfrac{-5}{2}$

c)

\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2x+2y+2z}=\dfrac{1}{2}\)

Suy ra : 

\(2x=y+z+1\Leftrightarrow y+z=2x-1\)

Mặt khác : 

\(x+y+z=\dfrac{1}{2}\Leftrightarrow x+2x-1=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}\)

\(2y=x+z+1=z+\dfrac{3}{2}\)

Mà \(y+z=0\Leftrightarrow z=-y\)

nên suy ra:  \(y=\dfrac{1}{2};z=-\dfrac{1}{2}\)

8 tháng 11 2015

3x=2y=>x/y=2/3=>x/2=y/3 =>x/10=y/15

7y=5z=>y/z=5/7=>y/5=z/7=>y/15=z/21

=>x/10=y/15=z/21

áp dụng ....