K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2018

Thay x+y+z=1 vào biểu thức C, ta được:

\(C=\left(x+y+z-x\right)\left(x+y+z-y\right)\left(x+y+z-z\right)\)

\(C=\left(y+z\right)\left(z+x\right)\left(x+y\right)=\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

Ta có: \(x^3+y^3+z^3=\frac{1}{9}\Leftrightarrow\left(x+y+z\right)^3-3\left(x+y\right)\left(y+z\right)\left(z+x\right)=\frac{1}{9}\)

Thay x+y+z=1. Suy ra \(1-3\left(x+y\right)\left(y+z\right)\left(z+x\right)=\frac{1}{9}\)

\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)=\frac{8}{9}\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=\frac{8}{9.3}=\frac{8}{27}\)

\(\Rightarrow C=\left(x+y\right)\left(y+z\right)\left(z+x\right)=\frac{8}{27}.\)

ĐS:...

1 tháng 5 2020

Bài 1:

Đặt a=x-1; b=y-1; c=z-1. Khi đó a;b;c\(\in\)[-1;1], a+b+c=0 và 

\(P=\left(a+1\right)^3+\left(b+1\right)^3+\left(c+1\right)^3-3abc\)

\(=a^3+b^3+c^3-3abc+3\left(a^2+b^2+c^2\right)+3\left(a+b+c\right)+3\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3\left(a^2+b^2+c^2\right)+3\left(a+b+c\right)+3\)

\(=3\left(a^2+b^2+c^2\right)+3\)

Ta có: \(0\le a^2+b^2+c^2\le2\)

Từ đây ta dễ thấy Min P=3 đạt được khi x=y=z=1

1 tháng 5 2020

Ta xét tống T của 3 số x(1-y);y(1-x);z(1-x)

Ta có T=x(1-y)+y(1-z)+z(1-x)=x+y+z-xy-xz-yz

Theo giả thiết xyz=(1-x)(1-y)(1-z)=1-(x+y+z-xy-xz-yz)-xyz

=> 2xyz=1-T => T=1-2xyz

Nhưng x2y2z2 =[x(1-x)][y(1-y)][z(1-z)]\(\le\frac{1}{4}\cdot\frac{1}{4}\cdot\frac{1}{4}=\frac{1}{64}\)

=> xyz\(\le\)\(\frac{1}{8}\Rightarrow2xy\le\frac{1}{4}\)

Vậy \(T\ge1-\frac{1}{4}=\frac{3}{4}\)

Vậy \(T\ge\frac{3}{4}\)nên trong 3 số x(1-x), y(1-y), z(1-z) có ít nhất một trong 3 số đó \(\ge\frac{1}{4}\left(đpcm\right)\)

13 tháng 1 2019

A B C E D b c x b

Giả sử AB=c,BC=a,CA=b; đường phân giác AD có độ dài x. Qua C kẻ đường thẳng song song với AD cắt tia BA tại E.

Dễ thấy: ^ACE = ^AEC (=^BAC/2) => \(\Delta\)ACE cân tại A => AC=AE=b => CE < 2b (BĐT tam giác)

Theo hệ quả ĐL Thales: \(\frac{AD}{CE}=\frac{BA}{BE}\)(Do AD // CE) hay \(\frac{x}{CE}=\frac{c}{b+c}\Rightarrow x=\frac{c.CE}{b+c}\)

Mà BE < 2b nên \(x< \frac{2bc}{b+c}\). Tương tự thì \(y< \frac{2ca}{c+a};z< \frac{2ab}{a+b}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (đpcm).

3 tháng 1 2016

Trước tiên ta chứng minh với x,y,z là các số dương thì  \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)(*)

Thật vậy BĐT (*) tương đương với   \(3+\left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)+\left(\frac{z}{y}+\frac{y}{z}\right)\ge9\)

hay \(\left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)+\left(\frac{z}{y}+\frac{y}{z}\right)\ge6\) ( **)

Bây giờ ta đi cm (**)  Với x,y là 2 số dương thì   \(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow\frac{x}{y}+\frac{y}{x}\ge2\) 

Tương tự: \(\frac{x}{z}+\frac{z}{x}\ge2;\frac{y}{z}+\frac{z}{y}\ge2\) Cộng các vế của các BĐT vừa cm được ta cm được (**) hay (*) cũng đúng

Áp dụng (*) ta có \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{9}{\left(x+y+z\right)}\) lại có \(x+y+z\le6\Leftrightarrow\frac{1}{x+y+z}\ge\frac{1}{6}\) ( x,y,z là các số dương)

Suy ra \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{\left(x+y+z\right)}\ge\frac{9}{6}=\frac{3}{2}\)

3 tháng 1 2016

wa thu vi nha minh cung hoc lop 8 do 

 

15 tháng 5 2020

Bài 3 thì \(\le1\)

Bài 4 thì \(\ge\frac{3}{4}\) nhé

27 tháng 12 2016

Bằng =0 

nếu cần chi tiết xẽ có

28 tháng 12 2016

cậu vào đường link này sẽ rõ:http://olm.vn/hoi-dap/question/794605.html

7 tháng 6 2015

thì áp dụng ở trên cái trong ngoặc là: \(\left(a^2+b^2+c^2-ab-bc-ac\right)\)

thay a=x-y, b= y-z, c=z-x vào là đc thôi. căn bản bạn k cần quan tâm bởi cái đằng trước là 0 r :)))

hiểu thì cho đúng đi nhé ;)