Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+\frac{1}{y}=y+\frac{1}{z}\Rightarrow x-y=\frac{1}{z}-\frac{1}{y}=\frac{z-y}{zy}\)
\(y+\frac{1}{z}=z+\frac{1}{x}\Rightarrow y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{xz}\)
\(z+\frac{1}{x}=x+\frac{1}{y}\Rightarrow z-x=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{xy}\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{y-z}{zy}\cdot\frac{z-x}{zx}\cdot\frac{x-y}{xy}\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{\left(y-z\right)\left(z-x\right)\left(x-y\right)}{x^2y^2z^2}\)
\(\Rightarrow x^2y^2z^2\left(x-y\right)\left(y-z\right)\left(z-x\right)=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
\(\Rightarrow\left(x^2y^2z^2-1\right)\left(x-y\right)\left(y-z\right)\left(z-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2y^2z^2-1=0\\\left(x-y\right)\left(y-z\right)\left(z-x\right)=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2y^2z^2=1\\x=y=z\end{cases}}\)
x+1/y=y+1/z => x-y=1/z-1/y=(y-z)/yz
Tương tự y-z=(z-x)/zx ; z-x=(x-y)/xy
Nhân theo vế các đẳng thức trên ta đc:
(x-y)(y-z)(z-x)=(x-y)(y-z)(z-x)/x2y2z2
=>(x-y)(y-z)(z-x)x2y2z2-(x-y)(y-z)(z-x)=0
=>(x-y)(y-z)(z-x)(x2y2z2-1)=0
=>x-y=0 hoặc y-z=0 hoặc z-x=0 hoặc x2y2z2-1=0
=>x=y=z hoặc x2y2z2=1(đfcm)
Ta có: \(x+\frac{1}{y}=y+\frac{1}{z}\Rightarrow x-y=\frac{1}{z}-\frac{1}{y}=\frac{y-z}{yz}\)(1)
\(y+\frac{1}{z}=z+\frac{1}{x}\Rightarrow y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{zx}\)(2)
\(z+\frac{1}{x}=x+\frac{1}{y}\Rightarrow z-x=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{xy}\)(3)
Nhân vế theo vế ba đẳng thức (1), (2), (3), ta được: \(\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{x^2y^2z^2}\)
\(\Rightarrow\orbr{\begin{cases}\left(x-y\right)\left(y-z\right)\left(z-x\right)=0\left(^∗\right)\\x^2y^2z^2=1\end{cases}}\)
Từ (*) ta giả sử x - y = 0 thì x = y khi đó \(\frac{1}{y}=\frac{1}{z}\Rightarrow y=z\)suy ra x = y = z. Tương tự đối với y - z = 0; z - x = 0
Vậy x = y = z hoặc x2y2z2 = 1
Giải :
Từ \(y^2=zx\Rightarrow\frac{x^2+y^2}{y^2+z^2}=\frac{x^2+xz}{zx+z^2}=\frac{x\left(x+z\right)}{z\left(x+z\right)}=\frac{x}{z}\)
Vậy \(\frac{x^2+y^2}{y^2+z^2}=\frac{x}{z}\)
\(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)
Ta có: \(x+\frac{1}{y}=y+\frac{1}{z}\)
\(\Rightarrow x-y=\frac{1}{z}-\frac{1}{y}\Rightarrow x-y=\frac{y-z}{yz}\)
Tương tự: \(y-z=\frac{z-x}{xz},z-x=\frac{x-y}{xy}\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{y-z}{yz}.\frac{z-x}{xz}.\frac{x-y}{xy}\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{x^2y^2z^2}\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(1-\frac{1}{x^2y^2z^2}\right)=0\)(1)
Mà x,y,z đoi 1 khác nhau nên: \(x-y\ne0,y-z\ne0,z-x\ne0\)(2)
Từ (1) và (2) ta được: \(1-\frac{1}{x^2y^2z^2}=0\Rightarrow x^2y^2z^2=1\)
Vậy \(A=x^4y^4z^4=\left(x^2y^2z^2\right)^2=1^2=1\)
Chúc bạn học tốt.
a) \(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\\= (x^3+x^2y-2x^2)-(xy+y^2-2y)+(x+y-2)+2019\\=x^2(x+y-2)-y(x+y-2)+(x+y-2)+2019\\=x^2.0-y.0+0+2019=2019\)
c) +) Với \(x + y + z = 0\) thì \(P = \dfrac{y+x}{y} \cdot \dfrac{z+y}z \cdot \dfrac{x + z}x = \dfrac{(-z)}{y} \cdot \dfrac{(-x)}z \cdot \dfrac{(-y)}x = -1\)
+) Với \(x + y + z \ne 0\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{y+z-x}x = \dfrac{z+x-y}y = \dfrac{x+y-z}z = \dfrac{y+z-x+z+x-y+x+y-z}{x+y+z} = \dfrac{x+y+z}{x+y+z} =1\)
Ta có \(\dfrac{y+z-x}x = 1 \iff y+z-x = x \iff y+z = 2x\)
Tương tự : \(z+x = 2y ; x + y = 2z\)
Kh đó \(P = \dfrac{y+x}{y} \cdot \dfrac{z+y}z \cdot \dfrac{x + z}x = \dfrac{2z}{y} \cdot \dfrac{2x}z \cdot \dfrac{2y}x = 8\)