Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)\(\Rightarrow\hept{\begin{cases}x-y=\frac{1}{z}-\frac{1}{y}=\frac{y-z}{xy}\\y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{xz}\\z-x=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{xy}\end{cases}}\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{\left(xyz\right)^2}\)
\(\Leftrightarrow\frac{1}{\left(xyz\right)^2}=1\Rightarrow xyz=\pm1\)(đpcm)
\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\\ \Rightarrow\dfrac{y+z-x}{x}+2=\dfrac{z+x-y}{y}+2=\dfrac{x+y-z}{z}+2\\ \Rightarrow\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\\ \Rightarrow x=y=z\\ \Rightarrow A=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)
\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)
\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
\(TH1:x+y+z=0\)
\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)
\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)
\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)
\(TH2:x+y+z\ne0\)
\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)
sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N
mà đề là x+y+z khác 0 -.-
áp dụng tính chất của dãy tỉ số bằng nhau ta có:\(\frac{ }{ }\)
y+z-x/x=z+x-y/y=x+y-z/z
=y+z-x+z+x-y+x+y-z/x+y+z
=(y-y)+(z-z)-(x-x)+z+x+y/x+y+z
=0+0+0+x+y+z/x+y+z=1
\(\Leftrightarrow\)x=y=z (*)
thay (*) vào B ta có:
B=(1+x/x)(1+x/x)(1+x/x)
=2.2.2=8
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(...=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)( vì x + y + z \(\ne\)0 )
\(\Rightarrow\hept{\begin{cases}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{cases}}\Rightarrow\hept{\begin{cases}y+z-x=x\\z+x-y=y\\x+y-z=z\end{cases}}\Rightarrow\hept{\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}}\Rightarrow x=y=z\)
Thế x = y = z vào B ta được :
\(B=\left(1+\frac{y}{y}\right)\left(1+\frac{x}{x}\right)\left(1+\frac{z}{z}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2\cdot2\cdot2=8\)
=>(x+y)(z-x)=(x+z)(x-y)
x(z-x)+y(z-x)=x(x-y)+z(x-y)
zx-x^2+yz-xy=x^2-xy+zx-yz
(yz+yz)+(zx-zx)=(x^2+x^2)-(xy-xy)
2yz=2x^2
=>yz=x^2
nên x^2-yz=0
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
A=\(\frac{y+z+z+x+x+y}{x+y+z}\)=\(\frac{2x+2y+2z}{x+y+z}\)=\(\frac{2\left(x+y+z\right)}{x+y+z}\)=2
\(\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}\)
\(\Rightarrow\frac{x}{y+z}+1=\frac{y}{z+x}+1=\frac{z}{x+y}+1\)
\(\Rightarrow\frac{x+y+z}{y+z}=\frac{y+z+x}{z+x}=\frac{z+x+y}{x+y}\)
Vì x+y+z khác 0 nên ta xét \(x+y+z\ne0\) suy ra x=y=z
Khi đó \(A=\frac{x+x}{x}+\frac{x+x}{x}+\frac{x+x}{x}=\frac{2x}{x}+\frac{2x}{x}+\frac{2x}{x}=2+2+2=6\)
\(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)
Ta có: \(x+\frac{1}{y}=y+\frac{1}{z}\)
\(\Rightarrow x-y=\frac{1}{z}-\frac{1}{y}\Rightarrow x-y=\frac{y-z}{yz}\)
Tương tự: \(y-z=\frac{z-x}{xz},z-x=\frac{x-y}{xy}\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{y-z}{yz}.\frac{z-x}{xz}.\frac{x-y}{xy}\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{x^2y^2z^2}\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(1-\frac{1}{x^2y^2z^2}\right)=0\)(1)
Mà x,y,z đoi 1 khác nhau nên: \(x-y\ne0,y-z\ne0,z-x\ne0\)(2)
Từ (1) và (2) ta được: \(1-\frac{1}{x^2y^2z^2}=0\Rightarrow x^2y^2z^2=1\)
Vậy \(A=x^4y^4z^4=\left(x^2y^2z^2\right)^2=1^2=1\)
Chúc bạn học tốt.