Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)
\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)
\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)
\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)
Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)
Ta có : \(x^2+y^2+z^2=1\)
\(\Rightarrow\hept{\begin{cases}x^2+y^2=1-z^2\\y^2+z^2=1-x^2\\x^2+z^2=1-y^2\end{cases}\left(1\right)}\)
\(A=\frac{x}{y^2+z^2}+\frac{y}{z^2+x^2}+\frac{z}{x^2+y^2}\)
Từ \(\left(1\right)\Rightarrow A=\frac{x}{1-x^2}+\frac{y}{1-y^2}+\frac{z}{1-z^2}\)
\(\Rightarrow A=\left(\frac{x}{1-x^2}+\frac{y}{1-y^2}\right)+\frac{z}{1-z^2}\)
Nếu \(x=y=z=\frac{1}{\sqrt{3}}\Rightarrow A=\frac{3\sqrt{3}}{2}\). Ta sẽ chứng minh đó là min A. Thật vậy:
BĐT<=> \(\Sigma_{sym}\frac{x}{y^2+z^2}=\Sigma_{sym}\frac{x}{1-x^2}\ge\frac{3\sqrt{3}}{2}.\Sigma x^2\)
Ta sẽ chứng minh \(\frac{x}{1-x^2}\ge\frac{3\sqrt{3}}{2}x^2\Leftrightarrow\frac{1}{x\left(1-x^2\right)}\ge\frac{3\sqrt{3}}{2}\)
\(\Leftrightarrow\frac{1}{2}.\left[2x^2\left(1-x^2\right)\left(1-x^2\right)\right]\le\frac{4}{27}\)
BĐT này đúng theo AM-GM nên \(\frac{x}{1-x^2}\ge\frac{3\sqrt{3}}{2}x^2\). Thiết lập tương tự hai bđt kia rồi cộng theo vế ...
P/s: dùng AM-GM thế này đúng ko ta?
\(M^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2xy}{\sqrt{yz}}+\frac{2yz}{\sqrt{zx}}+\frac{2xz}{\sqrt{yz}}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)
Áp dụng bđt Cô-si: \(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2}{y}.\frac{x\sqrt{y}}{\sqrt{z}}.\frac{x\sqrt{y}}{\sqrt{z}}.z}=4x\)
tương tự \(\frac{y^2}{z}+\frac{y\sqrt{z}}{\sqrt{x}}+\frac{y\sqrt{z}}{\sqrt{x}}+x\ge4y\);\(\frac{z^2}{x}+\frac{z\sqrt{x}}{\sqrt{y}}+\frac{z\sqrt{x}}{\sqrt{y}}+y\ge4z\)
=>\(M^2+x+y+z\ge4\left(x+y+z\right)\Rightarrow M^2\ge3\left(x+y+z\right)\ge3.12=36\Rightarrow M\ge6\)
Dấu "=" xảy ra khi x=y=z=4
Vậy minM=6 khi x=y=z=4
\(\frac{x+1}{1+y^2}=\frac{\left(x+1\right)\left(y^2+1\right)-y^2\left(x+1\right)}{1+y^2}=x+1-\frac{y^2\left(x+1\right)}{1+y^2}\ge x+1-\frac{xy+y}{2}\)
Tương tự ta có:
\(\frac{y+1}{z^2+1}\ge y+1-\frac{yz+z}{2}\)
\(\frac{z+1}{1+x^2}\ge z+1-\frac{zx+x}{2}\)
Cộng vế theo vế ta có:
\(Q\ge3+\left(x+y+z\right)-\frac{x+y+z+xy+yz+zx}{2}\)
\(=3+\frac{x+y+z-xy-yz-zx}{2}\)
Có BĐT phụ sau:
\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) ( tự cm )
\(\Rightarrow xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=3\)
Khi đó \(P\ge3\)
Dấu "=" xảy ra tại \(x=y=z=1\)
Áp dụng bđt AM-GM ta được:
\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=x\)
\(\frac{y^2}{z+x}+\frac{z+x}{4}\ge2\sqrt{\frac{y^2}{z+x}.\frac{z+x}{4}}=y\)
\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge2\sqrt{\frac{z^2}{x+y}.\frac{x+y}{4}}=z\)
Cộng từng vế các bất đẳng thức trên ta được
\(A+\frac{x+y+z}{2}\ge x+y+z\)
\(\Rightarrow A\ge\frac{x+y+z}{2}=1\)
Dấu"="xảy ra \(\Leftrightarrow x=y=z=\frac{2}{3}\)
Cách 2:Dù dài hơn Lê Tài Bảo Châu
\(\frac{x^2}{y+z}+x=\frac{x^2+x\left(y+z\right)}{y+z}=\left(x+y+z\right)\cdot\frac{x}{y+z}\)
\(\frac{y^2}{z+x}+y=\left(x+y+z\right)\cdot\frac{y}{z+x};\frac{z^2}{x+y}+z=\left(x+y+z\right)\cdot\frac{z}{x+y}\)
Suy ra \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}+\left(x+y+z\right)=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\)
Đến đây thay x+y+z=2 và BĐT netbitt là ra ( chứng minh netbitt nha )
Cách 3:
\(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=1\)
Dấu "=" xảy ra tại \(a=b=c=\frac{2}{3}\)
\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)
\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)
\(Q=\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}+\frac{1}{1+x^2}\)
Ta có \(\frac{x}{1+y^2}=\frac{x\left(1+y^2\right)-xy^2}{1+y^2}=x-\frac{xy^2}{1+y^2}\ge x-\frac{xy^2}{2y}=x-\frac{xy}{2}\)
Tương tự \(\frac{y}{1+z^2}\ge y-\frac{yz}{2}\)
\(\frac{z}{1+x^2}\ge z-\frac{zx}{2}\)
Lại có \(\frac{1}{1+y^2}=\frac{y^2+1-y^2}{1+y^2}=1-\frac{y^2}{1+y^2}\ge1-\frac{y^2}{2y}=1-\frac{y}{2}\)
Tương tự \(\frac{1}{1+x^2}\ge1-\frac{x}{2}\)
\(\frac{1}{1+z^2}\ge1-\frac{z}{2}\)
Cộng từng vế các bđt trên ta được
\(Q\ge\left(x+y+z\right)-\frac{xy+yz+zx}{2}+3-\frac{x+y+z}{2}\)\(=\frac{9}{2}-\frac{3}{2}=3\)
Dấu "=" xảy ra khi x=y=z=1
\(A=\frac{x}{1-x^2}+\frac{y}{1-y^2}+\frac{z}{1-z^2}\)
Có BĐT phụ \(\frac{x}{1-x^2}\ge\frac{3\sqrt{3}}{2}x^2\)
\(\Leftrightarrow\frac{\frac{-x^2\left(27x^6-54x^4+27x^2-4\right)}{4\left(x-1\right)^2\left(x+1\right)^2}}{\frac{x}{1-x^2}+\frac{3\sqrt{3}}{2}x^2}\ge0\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\frac{y}{1-y^2}\ge\frac{3\sqrt{3}}{2}y^2;\frac{z}{1-z^2}\ge\frac{3\sqrt{3}}{2}z^2\)
Cộng theo vế 3 BĐT trên ta có;
\(A\ge\frac{3\sqrt{3}}{2}\left(x^2+y^2+z^2\right)=\frac{3\sqrt{3}}{2}\)
Khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Bài này ngoài cách này còn có 1 cách khá trâu mà giờ mỏi v~ ý cần thêm thì ib
Bài làm thì m không ý kiến nhưng mà m nghĩ cái bất đẳng thức phụ bác nên chứng minh lại đi. Ai lại cố gắng làm cho nó thành 1 đống rồi khẳng định đống đó là đúng bao giờ. Làm thế thì không phải bài chứng minh rồi.