K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

x2-yz=a=>ax=x(x2-yz)=x3-xyz

tương tự và cộng lại ta có ax+by+cz=x3+y3+z3-3xyz=(x+y+z)(x2+y2+z2-xy-yz-zx)=(x+y+z)(a+b+c) 

ta có đpcm

10 tháng 11 2021

\(ax+by+cz\\ =x\left(x^2-yz\right)+y\left(y^2-xz\right)+z\left(z^2-xy\right)\\ =x^3+y^3+z^3-3xyz\\ =\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

Lại có \(a+b+c=x^2+y^2+z^2-xy-yz-xz\)

Vậy ta được đpcm

a: \(ax+by+cz\)

\(=x^3-xyz+y^3-xyz+z^3-xyz\)

\(=x^3+y^3+z^3-3xyz\)

b: \(ax+by+cz\)

\(=x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3yxz\)

\(=\left(x+y+z\right)\left(x^2+y^2+2xy-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

29 tháng 1 2020

theo đề bài thì:

\(ax+by+cz=x^3+y^3+z^3-3xyz⋮x^2+y^2+z^2-xy-yz-zx\)

Mà có hằng đẳng thức:

\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

=> đpcm

24 tháng 11 2019

mình chỉ hỏi chơi thôi chứ mình biết làm rồi

24 tháng 10 2019

Từ giả thiết 
x^2 - yz = a 
y^2 - zx = b 
z^2 - xy = c 
ta suy ra 
x^2 + y^2 + z^2 - xy - yz - zx = a + b + c # 0 (vì x,y,z không đồng thời bằng nhau); 
và 
x^3 - xyz = ax 
y^3 - xyz = by 
z^3 - xyz = cz. 
Cộng các đẳng thức theo vế, ta được 
x^3 + y^3 + z^3 - 3xyz = ax + by + cz. 
Sử dụng hằng đẳng thức x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) và x^2 + y^2 + z^2 - xy - yz - zx = a + b + c thì đẳng thức trên được viết lại 
(x + y + z)(a + b + c) = ax + by + cz. 
Suy ra ax + by + cz chia hết cho a + b + c. 

24 tháng 10 2019

bài này dùng chia hết thôi