K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2017

theo cô-si ta có

\(x+y\ge2\sqrt{xy}\)

\(y+z\ge2\sqrt{yz}\)

\(x+z\ge2\sqrt{xz}\)

nhân vế với vế ta có

\(A=\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge2\sqrt{xy}\times2\sqrt{yz}\times2\sqrt{xz}\)

\(A=\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\sqrt{x^2y^2z^2}=8xyz\)

mà xyz=2            suy ra

\(A=\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\times2=16\)

vậy GTNN của A=16

28 tháng 7 2017

Ta có: x+y + z = 0 => x = -y-z (1) ; y= -x-z (2); z = -y-x (3)

Thay (1); (2); (3) vào A = (x+y)(y+z)(x+z), có:

A = (-y-z+y)(-x-z+z)(x - y - x) = (-z)(-x)(-y) = -(xyz) = -2 

Vậy khi xyz = 2 và x+y+z = 0 thì giá trị biểu thức  A = (x+y)(y+z)(x+z) là -2

21 tháng 2 2020

Xét (1/x+1/y+1/z)^2=1/x^2+1/y^2+1/z^2+2/xy+2/yz+2/xz

=P+2/xy+2/yz+2/xz=P+(2z+2x+2y)/xyz=P+2(x+y+z)/x+y+z=P+2

mà (1/x+1/y+1/z)^2=3

=>p=3-2=1

AH
Akai Haruma
Giáo viên
6 tháng 11 2023

Lời giải:
Áp dụng BĐT Cauchy-Schwarz:

$A=\frac{1}{xz}+\frac{1}{xy}=\frac{1}{x}(\frac{1}{y}+\frac{1}{z})\geq \frac{1}{x}.\frac{4}{y+z}$

$=\frac{4}{x(y+z)}=\frac{4}{x(2-x)}$

Áp dụng BĐT AM-GM:

$x(2-x)\leq \left(\frac{x+2-x}{2}\right)^2=1$

$\Rightarrow A\geq \frac{4}{1}=4$
Vậy $A_{\min}=4$. Giá trị này đạt tại $x=1; y=z=\frac{1}{2}$

27 tháng 4 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}=\frac{x-y-z-x+y-z-x-y+z}{x+y+z}\)\(=\frac{-\left(x+y+z\right)}{x+y+z}\)

Nếu   \(x+y+z=0\)thì   \(\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}}\)

\(A=\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\)

\(=\frac{x+y}{x}.\frac{y+z}{y}.\frac{z+x}{z}\)

\(=\frac{-z}{x}.\frac{-x}{y}.\frac{-y}{z}=-1\)

Nếu  \(x+y+z\ne0\)thì   \(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}=-1\)

suy ra:   \(\frac{x-y-z}{x}=-1\)            \(\Rightarrow\)       \(x-y-z=-x\)          \(\Rightarrow\)     \(y+z=2x\)

             \(\frac{-x+y-z}{y}=-1\)                     \(-x+y-z=-y\)                         \(x+z=2y\)

             \(\frac{-x-y+z}{z}=-1\)                    \(-x-y+z=-z\)                         \(x+y=2z\)

\(A=\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\)

\(=\frac{x+y}{x}.\frac{y+z}{y}.\frac{x+z}{z}\)

\(=\frac{2z}{x}.\frac{2x}{y}.\frac{2y}{z}=8\)

\(A=\dfrac{x^3+y^3+z^3}{xyz}=\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)}{xyz}\)

\(=\dfrac{\left(-z\right)^3+z^3-3xy\left(-z\right)}{xyz}=3\)

1 tháng 11 2020
  • Với xyz \(\ne\) 0 ta có:

x + y + z = 0 \(\Leftrightarrow\)\(\hept{\begin{cases}y+z=-x\\x+y=-z\\x+z=-y\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}(y+z)^2=(-x)^2\\(x+y)^2=(-z)^2\\(x+z)^2=(-y)^2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y^2+2yz+z^2=x^2\\x^2+2xy+y^2=z^2\\x^2+2xz+z^2=y^2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y^2+z^2-x^2=-2yz\\x^2+y^2-z^2=-2xy\\x^2+z^2-y^2=-2xz\end{cases}}\)

Thay vào P ta được:

P=\(\frac{1}{-2yz}\)\(+\)\(\frac{1}{-2xy}\)\(+\)\(\frac{1}{-2xz}\)\(=\)\(\frac{-x}{2xyz}\)\(+\)\(\frac{-z}{2xyz}\)\(+\)\(\frac{-y}{2xyz}\)\(=\)\(\frac{-(x+y+z)}{2xyz}\)\(=\)\((x+y+z=0)\)

Vậy với \(x+y+z=0\)và \(xyz\ne0\)thì \(P=0\)