K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2018

Ta có: \(5x^2+6xy+5y^2=4\left(x+y\right)^2+\left(x-y\right)^2\ge4\left(x+y\right)^2\)

tương tự: \(5y^2+6yz+5z^2\ge4\left(y+z\right)^2\) ;\(5z^2+6xz+5z^2\ge4\left(x+z\right)^2\)

\(\Rightarrow P\ge\dfrac{2\left(x+y\right)}{x+y+2z}+\dfrac{2\left(y+z\right)}{y+z+2x}+\dfrac{2\left(x+z\right)}{x+z+2y}\)

\(\Leftrightarrow\dfrac{P}{2}\ge\dfrac{x+y}{x+y+2z}+\dfrac{y+z}{y+z+2x}+\dfrac{x+z}{x+z+2y}\)

\(\Leftrightarrow\dfrac{P}{2}\ge\dfrac{x+y}{\left(x+z\right)+\left(y+z\right)}+\dfrac{y+z}{\left(x+y\right)+\left(x+z\right)}+\dfrac{x+z}{\left(x+y\right)+\left(y+z\right)}\)Theo BDT Nesbit

\(\dfrac{x+y}{\left(x+z\right)+\left(y+z\right)}+\dfrac{y+z}{\left(x+y\right)+\left(x+z\right)}+\dfrac{x+z}{\left(x+y\right)+\left(y+z\right)}\ge\dfrac{3}{2}\)

Vậy \(\dfrac{P}{2}\ge\dfrac{3}{2}\Leftrightarrow P\ge3\)

Min P = 3 khi x = y = z

AH
Akai Haruma
Giáo viên
16 tháng 3 2018

Lời giải:

Ta có: \(5x^2+6xy+5y^2=3(x^2+y^2+2xy)+2(x^2+y^2)\)

\(=3(x+y)^2+2(x^2+y^2)\geq 3(x+y)^2+(x+y)^2\) (theo BĐT AM-GM)

\(\Leftrightarrow 5x^2+6xy+5y^2\geq 4(x+y)^2\Rightarrow \sqrt{5x^2+6xy+5y^2}\geq 2(x+y)\)

Thực hiện tương tự với những biểu thức còn lại suy ra:

\(P\geq \frac{2(x+y)}{x+y+2z}+\frac{2(y+z)}{y+z+2x}+\frac{2(z+x)}{z+x+2y}\)

\(P\geq 2\left(\frac{x+y}{x+y+2z}+\frac{y+z}{y+z+2x}+\frac{z+x}{z+x+2y}\right)=2\left(\frac{(x+y)^2}{(x+y+2z)(x+y)}+\frac{(y+z)^2}{(y+z+2x)(y+z)}+\frac{(z+x)^2}{(z+x+2y)(z+x)}\right)\)

Áp dụng BĐT Cauchy-Schwarz:

\(P\geq 2.\frac{(x+y+y+z+z+x)^2}{(x+y+2z)(x+y)+(y+z+2x)(y+z)+(z+x+2y)(z+x)}\)

\(\Leftrightarrow P\geq 2. \frac{4(x+y+z)^2}{2(x+y+z)^2+2(xy+yz+xz)}=\frac{4(x+y+z)^2}{(x+y+z)^2+xy+yz+xz}\)

\(\geq \frac{4(x+y+z)^2}{(x+y+z)^2+\frac{(x+y+z)^2}{3}}=3\) (theo AM-GM \(xy+yz+xz\leq \frac{(x+y+z)^2}{3}\))

Vậy \(P\geq 3\Leftrightarrow P_{\min}=3\)

Dấu bằng xảy ra khi \(x=y=z\)

13 tháng 1 2018

cm bđt phụ \(5x^2+6xy+5y^2\ge4\left(x+y\right)^2\)nhé

12 tháng 7 2020

Ta có: \(\sqrt{5x^2+6xy+5y^2}=\sqrt{4\left(x+y\right)^2+\left(x-y\right)^2}\ge\sqrt{4\left(x+y\right)^2}=2\left(x+y\right)\)

\(\Rightarrow\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}\ge\frac{2\left(x+y\right)}{x+y+2z}\)(1)

Tương tự, ta có: \(\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}\ge\frac{2\left(y+z\right)}{y+z+2x}\)(2); \(\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\ge\frac{2\left(z+x\right)}{z+x+2y}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}+\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}+\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\)\(\ge2\left[\frac{x+y}{\left(y+z\right)+\left(z+x\right)}+\frac{y+z}{\left(z+x\right)+\left(x+y\right)}+\frac{z+x}{\left(x+y\right)+\left(y+z\right)}\right]\)

Đặt \(x+y=a;y+z=b;z+x=c\)thì \(\frac{x+y}{\left(y+z\right)+\left(z+x\right)}+\frac{y+z}{\left(z+x\right)+\left(x+y\right)}+\frac{z+x}{\left(x+y\right)+\left(y+z\right)}\)\(=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

Nhưng ta có BĐT Nesbitt quen thuộc sau: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

Thật vậy: 

(Bài này mình đã làm nhiều rồi nha nên ngại đánh lại, đây là bất đẳng thức có rất nhiều cách chứng minh nhưng mình nghĩ dồn biến là cách hay và đẹp nhất nha! Có thể tham khảo nhiều cách khác trên mạng, vô thống kê hỏi đáp của mình xem ảnh)

Như vậy: \(\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}+\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}+\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\)\(\ge2\left[\frac{x+y}{\left(y+z\right)+\left(z+x\right)}+\frac{y+z}{\left(z+x\right)+\left(x+y\right)}+\frac{z+x}{\left(x+y\right)+\left(y+z\right)}\right]\)\(\ge2.\frac{3}{2}=3\)

Đẳng thức xảy ra khi x = y = z

NV
31 tháng 1 2019

\(2x^2+2xy+5y^2=\left(x+2y\right)^2+\left(x-y\right)^2\ge\left(x+2y\right)^2\)

\(\Rightarrow P\ge\dfrac{x+2y}{3x+y+5z}+\dfrac{y+2z}{3y+z+5x}+\dfrac{z+2x}{3x+x+5y}\)

\(\Rightarrow P\ge\dfrac{\left(x+2y\right)^2}{\left(x+2y\right)\left(3x+y+5z\right)}+\dfrac{\left(y+2z\right)^2}{\left(y+2z\right)\left(3y+z+5x\right)}+\dfrac{\left(z+2x\right)^2}{\left(z+2x\right)\left(3x+x+5y\right)}\)

\(\Rightarrow P\ge\dfrac{\left(x+2y\right)^2}{3x^2+2y^2+7xy+5xz+10yz}+\dfrac{\left(y+2z\right)^2}{3y^2+2z^2+7yz+5xy+10xz}+\dfrac{\left(z+2x\right)^2}{3z^2+2x^2+7xz+5yz+10xy}\)

\(\Rightarrow P\ge\dfrac{\left(x+2y+y+2z+z+2x\right)^2}{5\left(x^2+y^2+z^2\right)+22\left(xy+xz+yz\right)}\)

\(\Rightarrow P\ge\dfrac{9\left(x+y+z\right)^2}{5\left(x+y+z\right)^2+12\left(xy+xz+yz\right)}\ge\dfrac{9\left(x+y+z\right)^2}{5\left(x+y+z\right)^2+\dfrac{12\left(x+y+z\right)^2}{3}}\)

\(\Rightarrow P\ge1\)

\(\Rightarrow P_{min}=1\) khi \(x=y=z\)

30 tháng 12 2021

\(5x^2+2xy+2y^2-\left(4x^2+4xy+y^2\right)=\left(x-y\right)^2\ge0\\ \Leftrightarrow5x^2+2xy+2y^2\ge4x^2+4xy+y^2=\left(2x+y\right)^2\)

\(\Leftrightarrow P\le\dfrac{1}{2x+y}+\dfrac{1}{2y+z}+\dfrac{1}{2z+x}=\dfrac{1}{9}\left(\dfrac{9}{x+x+y}+\dfrac{9}{y+y+z}+\dfrac{9}{z+z+x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=1\)

Dấu \("="\Leftrightarrow x=y=z=1\)

30 tháng 12 2021

Em cảm ơn anh ạ! 

Anh giúp em ạ! 

https://hoc24.vn/cau-hoi/cho-abc-la-cac-so-duong-cmr-dfraca2bcdfracb2cadfracc2abgedfracabc2.4139278814936

17 tháng 7 2021

 đặt\(A=\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\)

\(=>A=\dfrac{x^4}{2x^2+3xy+5xz}+\dfrac{y^4}{2y^2+3yz+5xy}+\dfrac{z^4}{2z^2+3xz+5yz}\)

BBDT AM-GM 

\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)

theo BDT AM -GM ta chứng minh được \(xy+yz+xz\le x^2+y^2+z^2\)

vì \(x^2+y^2\ge2xy\)

\(y^2+z^2\ge2yz\)

\(x^2+z^2\ge2xz\)

\(=>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)< =>xy+yz+xz\le x^2+y^2+z^2\)

\(=>2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)

\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{10}=\dfrac{\dfrac{1}{3}}{10}=\dfrac{1}{30}\left(đpcm\right)\)

dấu"=" xảy ra<=>x=y=z=1/3

14 tháng 5 2021

Ta có x2-xy+y2=\(\left(\dfrac{x+y}{2}\right)^2+3\left(\dfrac{x-y}{2}\right)^2\)\(\ge\)\(\left(\dfrac{x+y}{2}\right)^2\)

=>\(\dfrac{\sqrt{x^2-xy+y^2}}{x+y+2z}\ge\dfrac{x+y}{2\left(x+y+2z\right)}\)(1) . Tương tự ...

Đặt \(\left\{{}\begin{matrix}y+z=a\\x+z=b\\x+y=c\end{matrix}\right.\)(a,b,c>0). Khi đó ta có :

S=\(\dfrac{1}{2}\left(\dfrac{c}{a+b}+\dfrac{b}{a+c}+\dfrac{a}{b+c}\right)\ge\dfrac{3}{4}\)  (Netbit)

19 tháng 5 2021

\(gt\Leftrightarrow\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}=1\)

\(P=\dfrac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2x^2+xz+2z^2}+z\sqrt{2y^2+xy+2x^2}\right)\)

\(=\dfrac{1}{xyz}\left(x\sqrt{\dfrac{5}{4}\left(y+z\right)^2+\dfrac{3}{4}\left(y-z\right)^2}+y\sqrt{\dfrac{5}{4}\left(x+z\right)^2+\dfrac{3}{4}\left(x-z\right)^2}+z\sqrt{\dfrac{5}{4}\left(x+y\right)^2+\dfrac{3}{4}\left(x-y\right)^2}\right)\)

\(\ge\dfrac{1}{xyz}\left[x.\dfrac{\sqrt{5}\left(z+y\right)}{2}+y.\dfrac{\sqrt{5}\left(x+z\right)}{2}+z.\dfrac{\sqrt{5}\left(x+y\right)}{2}\right]\)

\(=\dfrac{\sqrt{5}\left(z+y\right)}{2yz}+\dfrac{\sqrt{5}\left(x+z\right)}{2xz}+\dfrac{\sqrt{5}\left(x+y\right)}{2xy}\)

\(=\dfrac{\sqrt{5}}{3}\left(1+1+1\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge\dfrac{\sqrt{5}}{3}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)^2=\dfrac{\sqrt{5}}{3}\) (bunhia)

Dấu = xảy ra khi \(x=y=z=9\)

19 tháng 5 2021

 Thấy : \(\sqrt{2y^2+yz+2z^2}=\sqrt{\dfrac{5}{4}\left(y+z\right)^2+\dfrac{3}{4}\left(y-z\right)^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)>0\) 

CMTT : \(\sqrt{2x^2+xz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)  ; \(\sqrt{2y^2+xy+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\) 

Suy ra : \(P\ge\dfrac{1}{xyz}.\dfrac{\sqrt{5}}{2}\left[x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\right]\)

\(\Rightarrow P\ge\sqrt{5}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) 

Ta có : \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=\sqrt{xyz}\Leftrightarrow\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}=1\) 

Mặt khác :   \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)^2}{3}=\dfrac{1}{3}\)

Suy ra : \(P\ge\dfrac{\sqrt{5}}{3}\)

" = " \(\Leftrightarrow x=y=z=9\)

19 tháng 8 2023

Để chứng minh bất đẳng thức trên, ta sẽ sử dụng phương pháp giả sử ngược (Proof by Contradiction). Giả sử bất đẳng thức trên không đúng, tức là: (5x^3 - y^3)/(3x^2 + xy + 5y^3) + (5y^3 - z^3)/(3y^2 + yz + 5z^3) + (5z^3 - x^3)/(3z^2 + xz + 5x^3) > x + y + z Ta có thể viết lại bất đẳng thức trên thành: (5x^3 - y ^3)/(3x^2 + xy + 5y^3) - x + (5y^3 - z^3)/(3y^2 + yz + 5z^3) - y + (5z^3 - x^3 )/(3z^2 + xz + 5x^3) - z > 0 Tiếp theo, ta nhận thấy rằng với mọi a, b > 0, ta luôn có: (a^3 - b^3)/(a^2 + ab + b^2) - a > 0 and (a^3 - b^3)/(a^2 + ab + b^2) - b > 0. Vì vậy, áp dụng bất đẳng thức trên từng phần thức trong tổng, ta có: (5x^3 - y^3)/(3x^2 + xy + 5y^3) - x > 0 (5y ^3 - z^3)/(3y^2 + yz + 5z ^3) - y > 0 (5z^3 - x^3)/(3z^2 + xz + 5x^3) - z > 0 Khi đặt a = x^3, b = y^3, c = z^3, ta có: (5a - b)/(3a^2 + ab + 5b) - a^(1/3) > 0 (5b - c)/(3b^2 + bc + 5c) - b^(1/3) > 0 (5c - a)/(3c^2 + ac + 5a) - c^(1/3) > 0 Nói cách khác, ta có các bất đẳng thức sau: (5a - b)/(3a^2 + ab + 5b) > a^(1/3) (5b - c)/(3b^2 + bc + 5c) > b^(1/3) ( 5c - a)/(3c^2 + ac + 5a) > c^( 1/3) Áp dụng bất đẳng thức AM-GM, ta có: 3a^2 + ab + 5b ≥ 3∛(15a^2b) 3b^2 + bc + 5c ≥ 3∛(15b^2c) 3c^2 + ac + 5a ≥ 3∛(15c^2a) Khi đặt A = 3a^2 + ab + 5b, B = 3b^2 + bc + 5c, C = 3c^2 + ac + 5a, ta có: A > a ^ (1/3) B > b^(1/3) C > c^(1/3) Từ đó, ta có: (A + B + C) > (a^(1/3) + b^(1/3) + c^(1/3)) Nhưng A, B, C lần lượt tương ứng với các số mẫu trong bất đẳng thức ban đầu, ta thu được: (5a - b)/(3a^2 + ab + 5b) + (5b - c)/(3b^2 + bc + 5c) + (5c - a)/(3c^ 2 + ac + 5a) > (a^(1/3) + b^(1/3) + c^(1/3)) Tuy nhiên, điều này trái với giả định ban đầu.