Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{z}{\left(x+y+z\right).z}-\frac{x+y+z}{z.\left(x+y+z\right)}=\frac{-x-y}{z.\left(x+y+z\right)}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{x+y}{-z.\left(x+y+z\right)}\)
TH1: x+y=0
=> x=-y => P=0
TH2: xy=-z.(x+y+z)
\(\Leftrightarrow xy=-xz-zy-z^2\Leftrightarrow xy+xz+zy+z^2=0\Leftrightarrow x.\left(y+z\right)+z.\left(y+z\right)=0\)
\(\Leftrightarrow\left(x+z\right).\left(y+z\right)=0\Leftrightarrow\orbr{\begin{cases}x=-z\\y=-z\end{cases}\Rightarrow P=0}\)
3) áp dụng đẳng thức \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
<=>\(1-3xyz=1\left(1-xy-yz-zx\right)\)
<=>\(3xyz=xy+yz+zx\)
mặt khác ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2zx=1\)
<=>\(1+2xy+2yz+2zx=1\)
<=> \(xy+yz+zx=0\)
do đó 3xyz=0<=> \(\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)
lần lượt thay x;y;z vào hệ ta có các cặp nghiệm (x;y;z)=(0;0;1),(0;1;0),(1;0;0)
do đó x^2017+y^2017+z^2017=1
\(\hept{\begin{cases}x+y+z=2010\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2010}\end{cases}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}}\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left[\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right]=0\)
\(\Leftrightarrow\left(x+y\right)\left[\frac{z\left(x+y+z\right)+xy}{xyz\left(x+y+z\right)}\right]=0\)
\(\Leftrightarrow\left(x+y\right)\left[\frac{zx+zy+z^2+xy}{xyz\left(x+y+z\right)}\right]=0\)
\(\Leftrightarrow\left(x+y\right)\left[\frac{z\left(x+z\right)+y\left(z+x\right)}{xyz\left(x+y+z\right)}\right]=0\)
\(\Leftrightarrow\left(x+y\right)\left[\frac{\left(x+z\right)\left(z+y\right)}{xyz\left(x+y+z\right)}\right]=0\)
\(\Leftrightarrow\frac{\left(x+y\right)\left(x+z\right)\left(z+y\right)}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left(x+z\right)\left(z+y\right)=0\)
<=> x+y = 0 hoặc x+z=0 hoặc z+y=0
<=> x = -y hoặc x = -z hoặc z = -y
\(\Rightarrow P=\left(x^{2007}+y^{2007}\right)\left(y^{2009}+z^{2009}\right)\left(z^{2009}+x^{2009}\right)=0\)
Xét với \(0< x,y,z< 1\) thì \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}>\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}>1\) (vô lí)
Xét \(x,y,z\ge1\) , đặt \(\hept{\begin{cases}x=a^3\\y=b^3\\z=c^3\end{cases}}\) (\(a,b,c\ge1\))
Ta có \(1=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=\frac{1}{a^3+1}+\frac{1}{b^3+1}+\frac{1}{c^3+1}\ge\frac{3}{abc+1}\) (cái này chắc you cm đc)
\(\Rightarrow abc\ge2\Rightarrow a^3.b^3.c^3\ge8\) hay \(xyz\ge8\) (1)
Áp dụng BĐT AM-GM : \(1=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{9}{x+y+z+3}\Rightarrow x+y+z\ge6\) (2)
Áp dụng BĐT Cauchy : \(1=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{3}{\sqrt[3]{\left(x+1\right)\left(y+1\right)\left(z+1\right)}}\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)\ge27\) (3)
Nhân (1), (2), (3) theo vế : \(xyz\left(x+y+z\right)\left(x+1\right)\left(y+1\right)\left(z+1\right)\ge1296\)
Đẳng thức xảy ra khi xảy ra đồng thời (1), (2), (3) , tức là x = y = z = 2
Vậy tập nghiệm của hệ : \(\left(x,y,z\right)=\left(2;2;2\right)\)
\(P=\frac{1}{xy-xyz-z}+\frac{1}{yz-xyz-x}+\frac{1}{xz-xzy-y}\) .Do xyz=-z =>-xyz=1 và x+y+z=0 . Thế vào P ta được \(P=\frac{1}{xy+1+x+y}+\frac{1}{yz+1+y+z}+\frac{1}{xz+1+x+z}\)\(P=\frac{1}{\left(x+1\right)\left(y+1\right)}+\frac{1}{\left(y+1\right)\left(z+1\right)}+\frac{1}{\left(x+1\right)\left(z+1\right)}\) =\(\frac{z+1+x+1+y+1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
\(P=\frac{3}{xyz+z+xz+yz+xy+1+x+y}\) =\(\frac{3}{xy+yz+xz}\) (Do x+y+z=0; xyz=-1)
x+y+z=0 => (x+y+z)2=0 => x2+y2+z2 +2(xy+yz+xz)=0 => 2(xy+yz+xz)=-6 => xy+yz+xz=-3 Thế vào P ta được :
\(P=\frac{3}{-3}=-1\) . Chúc bạn học tốt