Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(A=1+x+y⋮p\)
Ta có:
\(p=q.B\)(với q là số nguyên tố)
\(\Rightarrow1+x+y⋮q\)
Mà ta lại có:
\(\Rightarrow\hept{\begin{cases}x^{2016}⋮p\\y^{2017}⋮p\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x^{2016}⋮q\\y^{2017}⋮q\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x⋮q\\y⋮q\end{cases}}\)
\(\Rightarrow1+x+y⋮̸q\)
Mâu thuẫn giả thuyết. Vậy \(A⋮̸p\)
\(\left(x-y\right)^2+2xy⋮4\)
\(\Rightarrow x^2-2xy+y^2+2xy⋮4\)
\(\Rightarrow x^2+y^2⋮4\)
\(\Rightarrow x^2⋮4;y^2⋮4\)
mà \(4⋮2\)
\(\Rightarrow x^2⋮2;y^2⋮2\Rightarrow x⋮2;y⋮2\)
\(\Rightarrow dpcm\)
Bài làm của bạn Trí từ chỗ \(x^2+y^2⋮4\Rightarrow x^2,y^2⋮4\) thì bạn còn phải xét thêm trường hợp \(x,y\) cùng lẻ nữa. Vì số chính phương khi chia cho 4 chỉ có thể dư 0 hoặc 1 nên nếu \(x,y\) lẻ thì \(x^2+y^2\) chia 4 dư 2, không thỏa mãn. Vậy mới suy ra được \(x^2,y^2⋮4\). Còn lại bạn đúng hết rồi.
Vì a + 1 và b + 2009 chia hết cho 6 nên a + b + 2010 chia hết cho 6.
Mà 2010 chia hết cho 6 nên a + b chia hết cho 6.
4a không chia hết cho 6 nên 4a + a + b không chia hết cho 6.
Bạn xem lại đề.
Bài 4 :
Thay x=y+5 , ta có :
a ) ( y+5)*(y5+2)+y*(y-2)-2y*(y+5)+65
=(y+5)*(y+7)+y^2-2y-2y^2-10y+65
=y^2+7y+5y+35-y^2-2y-2y^2-10y+65
= 100
Bài 5 :
A = 15x-23y
B = 2x-3y
Ta có : A-B
= ( 15x -23y)-(2x-3y)
=15x-23y-2x-3y
=13x-26y
=13x*(x-2y) chia hết cho 13
=> Nếu A chia hết cho 13 thì B chia hết cho 13 và ngược lại
1) Gọi hai số cần tìm là a2 và b2(a,b lớn hơn hoặc bằng 2)
Vì a2+ b2= 2234 là số chẵn -> a, b cùng chẵn hoặc cùng lẻ
Mà chỉ có một số nguyên tố chẵn duy nhất là 2 -> hai số đó cùng lẻ
a2+ b2 = 2234 không chia hết cho 5
Giả sử cả a2, b2 đều không chia hết cho 5
-> a2,b2 chia 5 dư 1,4 ( vì là số chính phương)
Mà a2+ b2 = 2234 chia 5 dư 4 nên o có TH nào thỏa mãn -> Giả sử sai
Giả sử a=5 -> a2= 25
b2= 2209
b2= 472
-> b=47
Vậy hai số cần tìm là 5 và 47
A thuộc S thì A=x^2+3y^2
Nếu x chia hết cho 2 thì từ N chẵn, ta có y chia hết cho 2
=>N/4 thuộc S
Nếu x,y lẻ thì x^2-9y^2 đồng dư ra 1-9=0 mod 8
=>x-3y chia hết cho4 hoặc x+3y chia hết cho 4
Nếu x-3y chia hết cho 4 thì A/4=(x-3y/4)^2+3(x+y/4)^2
=>A/4 thuộc S
Chứng minh tương tự, ta cũng được nếu x+3y chia hết cho 4 thì A/4 cũng thuộc S
=>ĐPCM
a) \(2xy-y^2-6x+4y=7\)
\(\Leftrightarrow2xy-6x-y^2+3y+y-3=4\)
\(\Leftrightarrow\left(2x-y+1\right)\left(y-3\right)=4\)
Tới đây bạn xét bảng giá trị thu được nghiệm \(\left(x,y\right)\).
b) \(x^2+y^2-x⋮xy\Rightarrow x^2+y^2-x⋮x\Rightarrow y^2⋮x\).
Đặt \(y^2=kx,\left(k\inℤ\right),d=\left(x,k\right)\).
\(x^2+\left(kx\right)^2-x⋮xy\Rightarrow x+k^2x-1⋮y\).
suy ra \(x+k^2x-1⋮d\Rightarrow1⋮d\Rightarrow d=1\).
Do đó \(kx=y^2\)mà \(\left(k,x\right)=1\)nên \(x\)là số chính phương.