K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2022

Bài 2: 

Ta có: 2a2+2b2=(a2+2ab+b2)+(a2-2ab+b2)

                        =(a+b)2+(a-b)2 là tổng 2 số chính phương

⇒2a2+2b2 là tổng của 2 số chính phương(đpcm)

19 tháng 7 2021

bài 2 :

   x3+7y=y3+7x

   x3-y3-7x+7x=0

   (x-y)(x2+xy+y2)-7(x-y)=0

   (x-y)(x2+xy+y2-7)=0

    \(\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\left(loại\right)\\x^{2^{ }}+xy+y^2-7=0\end{matrix}\right.\)

   x2+xy+y2=7 (*)

   Giải pt (*) ta đc hai nghiệm phan biệt:\(\left[{}\begin{matrix}x=1va,y=2\\x=2va,y=1\end{matrix}\right.\)

25 tháng 8 2023

Xét \(P=x^2+y^2+2x\left(y-1\right)+2y+1\) 

\(P=x^2+y^2+2xy-2x+2y+1\)

+) Nếu \(y>x\) thì \(2y-2x+1>0\). Do đó \(P>\left(x+y\right)^2\). Hơn nữa:

\(P< x^2+y^2+1+2xy+2x+2y\) \(=\left(x+y+1\right)^2\)

suy ra \(\left(x+y\right)^2< P< \left(x+y+1\right)^2\), vô lí vì P là SCP.

+) Nếu \(x>y\) thì \(2y-2x+1< 0\) nên \(P< \left(x+y\right)^2\)

Hơn nữa \(P>x^2+y^2+1+2xy-2x-2y\) \(=\left(x+y-1\right)^2\)

Suy ra \(\left(x+y-1\right)^2< P< \left(x+y\right)^2\), vô lí vì P là SCP.

Vậy \(x=y\) (đpcm)

(Cơ mà nếu thay \(x=y\) vào P thì \(P=4x^2+1\) lại không phải là SCP đâu)

 

12 tháng 7 2023

\(\left(x-y\right)^2+2xy⋮4\)

\(\Rightarrow x^2-2xy+y^2+2xy⋮4\)

\(\Rightarrow x^2+y^2⋮4\)

\(\Rightarrow x^2⋮4;y^2⋮4\)

mà \(4⋮2\)

\(\Rightarrow x^2⋮2;y^2⋮2\Rightarrow x⋮2;y⋮2\)

\(\Rightarrow dpcm\)

12 tháng 7 2023

 Bài làm của bạn Trí từ chỗ \(x^2+y^2⋮4\Rightarrow x^2,y^2⋮4\) thì bạn còn phải xét thêm trường hợp \(x,y\) cùng lẻ nữa. Vì số chính phương khi chia cho 4 chỉ có thể dư 0 hoặc 1 nên nếu \(x,y\) lẻ thì \(x^2+y^2\) chia 4 dư 2, không thỏa mãn. Vậy mới suy ra được \(x^2,y^2⋮4\). Còn lại bạn đúng hết rồi.

20 tháng 12 2016

Một bài "troll" người ta.

\(x^2+1=x^2+xy+yz+zx=\left(x+y\right)\left(x+z\right)\).

Em làm tương tự rồi nhân nhau là xong đó.

11 tháng 12 2022

Ta có: x2+y2+2xy-4x-2y+1=0

      ⇔(x2+y2+2xy-2x-2y+1)-2x=0

      ⇔(x+y-1)2=2x

Mà (x+y-1)2 là số chính phương

⇒2x là số chính phương

⇒2x chia 4 dư 0 hoặc 1

Mà 2x là số chẵn 

⇒2x chia hết cho 4

⇒x chia hết cho 2

⇒x là số chẵn(đpcm)

Lại có:(x+y-1)2=2x

\(\dfrac{\left(x+y-1\right)^2}{2}\)=x

\(\dfrac{\left(x+y-1\right)^2}{2}\): 2=x:2

\(\dfrac{\left(x+y-1\right)^2}{2}\)\(\dfrac{1}{2}\) =x:2

\(\dfrac{\left(x+y-1\right)^2}{4}\)=x:2

⇒(\(\dfrac{x+y-1}{2}\))2=x:2  

Mà \(\left(\dfrac{x+y-1}{2}\right)^2\) là số chính phương

⇒x:2 là số chính phương (đpcm)

10 tháng 10 2016

\(M=\frac{\left(x^2-1\right)\left(x+1\right)+\left(y^2-1\right)\left(y+1\right)}{\left(x+1\right)\left(y+1\right)}=\frac{x^3+x^2-x-1+y^3+y^2-y-1}{xy+x+y+1}\)

\(=\frac{\left(x^3+y^3\right)+\left(x^2+y^2\right)-\left(x+y\right)-2}{xy+x+y+1}=\frac{\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x+y\right)^2-2xy-\left(x+y\right)-2}{xy+x+y+1}\)

\(=\frac{\left(x+y\right)\left(x+y+xy+1\right)+x^2\left(x+y\right)+y^2\left(x+y\right)-2xy\left(x+y\right)-2\left(x+y\right)-2xy-2}{xy+x+y+1}\)

\(=\frac{\left(x+y\right)\left(x+y+xy+1\right)+\left(x^2+y^2-2xy\right)\left(x+y\right)-2\left(x+y+xy+1\right)}{xy+x+y+1}\)

\(=\frac{\left(x+y-2\right)\left(x+y+xy+1\right)+\left(x-y\right)^2\left(x+y\right)}{xy+x+y+1}=x+y-2+\frac{\left(x-y\right)^2\left(x+y\right)}{xy+x+y+1}\)

x,y nguyên do đó để \(M\)nguyên thì \(\left(x-y\right)^2\left(x+y\right)\)chia hết cho \(xy+x+y+1\)

Dễ thấy \(\left(x-y\right)^2\left(x+y\right)\)không thể phân tích thành nhân tử \(xy+x+y+1\)nữa nên \(\left(x-y\right)^2\left(x+y\right)=0\)

Suy ra:

\(\hept{\begin{cases}x-y=0\\x+y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y\\x=-y\end{cases}}\)

Vậy:

\(x^2y^2-1=x^2.x^2-1=x^4-1\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2+1\right)\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)chia hết cho \(\left(x+1\right)\)

Vậy ta có đpcm

10 tháng 10 2016

CÂU TRẢ LỜI LÀ 6

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0