K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2015

\(A=\frac{x^2y^2}{x^2.xy+y^4}+\frac{x^2y^2}{x^4+xy.y^2}=\frac{\left(\frac{x}{y}\right)^2}{\left(\frac{x}{y}\right)^3+1}+\frac{\left(\frac{x}{y}\right)^2}{\frac{x}{y}.\left[\left(\frac{x}{y}\right)^3+1\right]}\)

\(=\frac{t^2}{t^3+1}+\frac{t^2}{t\left(t^3+1\right)}\text{ }\left(t=\frac{x}{y}>0\right)\)

\(=\left(\frac{t^2+t}{t^3+1}-1\right)+1=-\frac{\left(t-1\right)^2\left(t+1\right)}{t^3+1}+1\le1\forall t>0\)

Đẳng thức xảy ra khi \(t=1\Leftrightarrow x=y=1.\)

Vậy GTLN của A là 1.

15 tháng 12 2015

Ở CHTT ko có

9 tháng 8 2016

\(a.\) 

\(\text{*)}\) Áp dụng bđt  \(AM-GM\)  cho hai số thực dương  \(x,y,\)  ta có:

\(x+y\ge2\sqrt{xy}=2\)  (do  \(xy=1\)  )

\(\Rightarrow\)  \(3\left(x+y\right)\ge6\)

nên  \(D=x^2+y^2+\frac{9}{x^2+y^2+1}+3\left(x+y\right)\ge x^2+y^2+\frac{9}{x^2+y^2+1}+6\)

\(\Rightarrow\)  \(D\ge\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]+5\)

\(\text{*)}\)  Tiếp tục áp dụng bđt  \(AM-GM\)  cho bộ số loại hai số không âm gồm \(\left(x^2+y^2+1;\frac{9}{x^2+y^2+1}\right),\)  ta có:

\(\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]\ge2\sqrt{\left(x^2+y^2+1\right).\frac{9}{\left(x^2+y^2+1\right)}}=6\)

Do đó,  \(D\ge6+5=11\)

Dấu  \("="\)  xảy ra khi  \(x=y=1\)

Vậy,  \(D_{min}=11\)  \(\Leftrightarrow\)  \(x=y=1\)

\(b.\) Bạn tìm điểm rơi rồi báo lại đây

9 tháng 8 2016

b

\(8\sqrt{x-1}=4.2.\sqrt{x-1}.1\le4.\left(x-1+1\right)=4x\)

\(x.\sqrt{16-3x^2}\le\frac{x^2+16-3x^2}{2}=8-x^2\)

\(\Rightarrow y\le4x-x^2+8=-\left(x-2\right)^2+12\le12\)

Dấu bằng xảy ra khi \(x=2\)

NV
21 tháng 5 2019

\(A=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}\ge\frac{\left(x+y\right)^2}{2xy+x+y}\ge\frac{\left(x+y\right)^2}{\frac{\left(x+y\right)^2}{2}+x+y}=\frac{2}{3}\)

\(\Rightarrow A_{min}=\frac{2}{3}\) khi \(x=y=\frac{1}{2}\)

21 tháng 5 2019

Thankshaha

20 tháng 9 2016

Áp dụng Bđt Cô si :

\(x^4+y^2\ge2\sqrt{x^4y^2}=2x^2y=2x\left(xy=1\right)\)

\(\Leftrightarrow\frac{1}{x^4+y^2}\le\frac{1}{2x}\)\(\Leftrightarrow\frac{x}{x^4+y^2}\le\frac{x}{2x}=\frac{1}{2}\left(1\right)\)

\(x^2+y^4\ge2\sqrt{x^2y^4}=2xy^2=2y\left(xy=1\right)\)

\(\Leftrightarrow\frac{1}{x^2+y^4}\le\frac{1}{2y}\Leftrightarrow\frac{y}{x^2+y^4}\le\frac{1}{2}\left(2\right)\)

Cộng theo vế của (1) và (2) 

\(\Rightarrow A\le1\rightarrow Max_A=1\)

Dấu = khi x=y=1

9 tháng 12 2018

Áp dụng BĐT AM-GM ta có:

\(A\le\frac{x}{2.\sqrt{x^4.y^2}}+\frac{y}{2.\sqrt{x^2y^4}}=\frac{x}{2.x^2y}+\frac{y}{2.x.y^2}=\frac{1}{2xy}+\frac{1}{2xy}=\frac{2}{2xy}=1\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x^2=y^4\\x^4=y^2\end{cases}\Leftrightarrow x^2.x^4=y^2.y^4\Leftrightarrow x^6=y^6\Leftrightarrow}x=y=1\left(x,y>0\right)\)

Vậy \(A_{max}=1\Leftrightarrow x=y=1\)

10 tháng 12 2018

Không biết bài này cô si ngược được không?

Dự đoán xảy ra cực trị tại x = y = 1

Cho x = 1 hoặc y = 1

Khi đó: \(A=\frac{1}{1+y^2}+\frac{1}{1+x^2}\)

Mà \(\frac{1}{1+y^2}=1-\frac{y^2}{1+y^2}\ge1-\frac{y^2}{2y}=1-\frac{y}{2}\)

Tương tự: \(\frac{1}{1+x^2}\ge1-\frac{x}{2}\)

Cộng theo vế hai BĐT: \(A\ge\left(1+1\right)-\left(\frac{x}{2}+\frac{y}{2}\right)\)\(\ge2-\left(\frac{1}{2}+\frac{1}{2}\right)=1\)

5 tháng 8 2016

1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)

 \(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)

max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)

5 tháng 8 2016

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t

12 tháng 12 2015

cm bai toan phu 

a3+b3\(\ge ab\left(a+b\right)\)

ta co \(\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)

=>bai toan phu dung 

=>\(a^3+b^3\ge ab\left(a+b\right)\)

=>a3+b3+1\(\ge ab\left(a+b+c\right)\)

=>A\(\le\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}=\frac{z}{\left(x+y+z\right)}+\frac{x}{\left(x+y+z\right)}+\frac{y}{\left(x+y+z\right)}=1\)

MaxA=1<=>x=y=z=1

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .Bài 4 : Cho các...
Đọc tiếp

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :

\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .

Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :

\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)

Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :

\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .

Bài 4 : Cho các số dương a,b,c . Chứng minh :

\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

Bài 5: Cho x,y là hai số thực thỏa mãn :(x+y)2+7.(x+y)+y2+10=0 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=x+y+1

Bài 6: Tìm giá trị nhỏ nhất biểu thức : \(P=\frac{x^4+2x^2+2}{x^2+1}\)

Bài 7 : CHo các số dương a,b,c . Chứng minh bất đẳng thức :

\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\times\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

 

6
3 tháng 11 2019

neu de bai bai 1 la tinh x+y thi mik lam cho

4 tháng 11 2019

đăng từng này thì ai làm cho