Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn đã k đủ 3k hẹn lần sau
Bai 1. tinh chat bac cau
bai 2> a) x=+-2003
b) >x=0
c)x=y=0
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
Bài 1:
|x-2|=4-x
ĐK: \(4-x\ge0\Leftrightarrow x\le4\)
Ta có: \(\orbr{\begin{cases}x-2=4-x\\x-2=x-4\end{cases}\Rightarrow\orbr{\begin{cases}2x=6\\0=2\left(loại\right)\end{cases}\Rightarrow}}x=3\left(tm\right)\)
Vậy x = 3
Bài 2:
a, sao có z
b, Vì \(\hept{\begin{cases}\left|2017-x\right|\ge0\\\left|y-x+2018\right|\ge0\end{cases}\Rightarrow\left|2017-x\right|+\left|y-x+2018\right|\ge0}\)
Mà |2017-x|+|y-x+2018|=0
\(\Rightarrow\hept{\begin{cases}\left|2017-x\right|=0\\\left|y-x+2018\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=2017\\y-2017+2018=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2017\\y=1\end{cases}}}\)
Vậy x=2017,y=1
c, giống b
a) x ( x + 6 ) = 0 ⇔ x = 0 x + 6 = 0 ⇔ x = 0 x = − 6
Vậy x = 0 hoặc x = - 6
b) ( x − 3 ) . ( y + 7 ) = 0 ⇔ x − 3 = 0 y + 7 = 0 ⇔ x = 3 y = − 7
Vậy x = 3 hoặc x = -7
c) ( x − 2 ) ( x 2 + 2 ) = 0 ⇔ x − 2 = 0 x 2 + 2 = 0 ⇔ x = 2 x 2 = − 2 ( L )
Vậy x = 2
a/ Với mọi x,y ta có :
\(\hept{\begin{cases}\left|x\right|\ge0\\\left|y\right|\ge0\end{cases}}\)
\(\Leftrightarrow\left|x\right|+\left|y\right|\ge0\)
Mặt khác : \(\left|x\right|+\left|y\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}\left|x\right|=0\\\left|y\right|=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy ...
b/ Với mọi x,y ta có :
\(\hept{\begin{cases}\left|x-1\right|\ge0\\\left|y\right|\ge0\end{cases}}\)
\(\Leftrightarrow\left|x-1\right|+\left|y\right|\ge0\)
Mà \(\left|x-1\right|+\left|y\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}\left|x-1\right|=0\\\left|y\right|=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}\)
Vậy ...
b/ Với mọi x,y ta có :
\(\hept{\begin{cases}\left|x+2\right|\ge0\\\left|y-1\right|\ge0\end{cases}}\)
\(\Leftrightarrow\left|x+2\right|+\left|y-1\right|\ge0\)
Mà \(\left|x+2\right|+\left|y-1\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}\left|x+2\right|=0\\\left|y-1\right|=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)
Vậy ..
1a) (x - 2)2 - 9 = 7
=> (x - 2)2 = 7 + 9
=> (x - 2)2 = 16
=> (x - 2)2 = 42
=> \(\orbr{\begin{cases}x-2=4\\x-2=-4\end{cases}}\)
=> \(\orbr{\begin{cases}x=6\\x=-2\end{cases}}\)
Vậy ...
1b) |x - 2| - 9 = 7
=> |x - 2| = 7 + 9
=> |x - 2| = 16
=> \(\orbr{\begin{cases}x-2=16\\x-2=-16\end{cases}}\)
=> \(\orbr{\begin{cases}x=18\\x=-14\end{cases}}\)
Đặt \(A=\left|x+100\right|+\left|y-5\right|+\left|z+200\right|=0\)
Ta có : \(\hept{\begin{cases}\left|x+100\right|\ge0\forall x\\\left|y-5\right|\ge0\forall y\\\left|z+200\right|\ge0\forall z\end{cases}}\Rightarrow A\ge0\forall x;y;z\)
Dấu ''='' xảy ra : \(x=-100;y=5;z=-200\)
Bài làm
a) Vì | x | + | y | = 0
Mà trị tuyệt đối không bao giờ có kết quả là số nguyên âm
=> x = 0
y = 0
Vậy x = 0, y = 0
Câu b) tương tự
# Chúc bạn học tốt #
Với mọi x,y ta có :
\(\hept{\begin{cases}|x|\ge0\\|y|\ge0\end{cases}}\)
\(\Leftrightarrow|x|+|y|\ge0\)
Mặt khác : \(|x|+|y|=0\)
\(\Leftrightarrow\hept{\begin{cases}|x|=0\\|y|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\)