Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(K=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{3}{2xy}+24xy-20xy\)
\(\ge\frac{4}{\left(x+y\right)^2}+12-\frac{20\left(x+y\right)^2}{4}=11\)
Check xem có sai chỗ nào ko:v
Trời! Chứng minh vậy đọc ai hiểu được chời :)))
Vì \(\frac{1}{x^2+y^2}+\frac{1}{2xy}=\frac{1^2}{x^2+y^2}+\frac{1^2}{2xy}\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}=\frac{4}{\left(x+y\right)^2}\)
\(\frac{3}{2xy}+24xy\ge2\sqrt{\frac{3}{2xy}.24xy}=12\)
Lại quên dấu bằng xảy ra kìa em.
"=" xảy ra <=> x=y=1/2
12. Ta có \(ab\le\frac{a^2+b^2}{2}\)
=> \(a^2-ab+3b^2+1\ge\frac{a^2}{2}+\frac{5}{2}b^2+1\)
Lại có \(\left(\frac{a^2}{2}+\frac{5}{2}b^2+1\right)\left(\frac{1}{2}+\frac{5}{2}+1\right)\ge\left(\frac{a}{2}+\frac{5}{2}b+1\right)^2\)
=> \(\sqrt{a^2-ab+3b^2+1}\ge\frac{a}{4}+\frac{5b}{4}+\frac{1}{2}\)
=> \(\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{4}{a+b+b+b+b+b+1+1}\le\frac{4}{64}.\left(\frac{1}{a}+\frac{5}{b}+2\right)\)
Khi đó
\(P\le\frac{1}{16}\left(6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+6\right)\le\frac{3}{2}\)
Dấu bằng xảy ra khi a=b=c=1
Vậy \(MaxP=\frac{3}{2}\)khi a=b=c=1
13. Ta có \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le1\)
\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{9}{a+b+c+3}\)( BĐT cosi)
=> \(1\ge\frac{9}{a+b+c+3}\)
=> \(a+b+c\ge6\)
Ta có \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
=> \(\frac{a^3-b^3}{a^2+ab+b^2}=a-b\)
Tương tự \(\frac{b^3-c^3}{b^2+bc+c^2}=b-c\),,\(\frac{c^3-a^2}{c^2+ac+a^2}=c-a\)
Cộng 3 BT trên ta có
\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+c^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{c^2+bc+b^2}+\frac{a^3}{a^2+ac+c^2}\)
Khi đó \(2P=\frac{a^3+b^3}{a^2+ab+b^2}+...\)
=> \(2P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}+....\)
Xét \(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\)
<=> \(3\left(a^2-ab+b^2\right)\ge a^2+ab+b^2\)
<=> \(a^2+b^2\ge2ab\)(luôn đúng )
=> \(2P\ge\frac{1}{3}\left(a+b+b+c+a+c\right)=\frac{2}{3}.\left(a+b+c\right)\ge4\)
=> \(P\ge2\)
Vậy \(MinP=2\)khi a=b=c=2
Lưu ý : Chỗ .... là tương tự
Lời giải:
Ta có: \(P=\frac{1}{x^2+xy+y^2}+4xy+\frac{1}{xy}=\frac{1}{x^2+xy+y^2}+\frac{1}{3xy}+4xy+\frac{1}{4xy}+\frac{5}{12xy}\)
Áp dụng BĐT AM-GM: \(1=x+y\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}\)
\(4xy+\frac{1}{4xy}\geq 2\sqrt{4xy.\frac{1}{4xy}}=2(1)\)
\(\frac{5}{12xy}\geq \frac{5}{12.\frac{1}{4}}=\frac{5}{3}(2)\)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{x^2+xy+y^2}+\frac{1}{3xy}\geq \frac{4}{x^2+xy+y^2+3xy}=\frac{4}{(x+y)^2+2xy}=\frac{4}{1+2xy}\geq \frac{4}{1+2.\frac{1}{4}}=\frac{8}{3}(3)\)
Từ \((1);(2);(3)\Rightarrow P\geq \frac{8}{3}+2+\frac{5}{3}=\frac{19}{3}\)
Vậy \(P_{\min}=\frac{19}{3}\Leftrightarrow x=y=\frac{1}{2}\)
x,y>0 => theo bdt AM-GM thì x+y >/ 2 căn (xy)=2 , x^2+y^2 >/ 2xy=2 (do xy=1)
P=(x+y+1)(x^2+y^2)+4/(x+y)
>/ 2(x+y+1)+4/(x+y)=[(x+y)+4/(x+y)]+(x+y+2)
x,y>0=>x+y>0 => theo bdt AM-GM thì P >/ 2.2+2+2=8
minP=8
\(A=\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\left(\dfrac{1}{2xy}+8xy\right)+\dfrac{3}{xy}\)
\(A\ge\dfrac{4}{x^2+y^2+2xy}+2\sqrt{\dfrac{8xy}{2xy}}+\dfrac{3}{\dfrac{1}{4}\left(x+y\right)^2}\ge20\)
\(A_{min}=20\) khi \(x=y=\dfrac{1}{2}\)