Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hạng tử: \(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}\)
Thay \(xy+yz+zx=1\); ta có:
\(x\sqrt{\frac{\left(y^2+xy+yz+zx\right)\left(z^2+xy+yz+zx\right)}{x^2+xy+yz+zx}}=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)^2\left(x+z\right)}{\left(x+y\right)\left(x+z\right)}}\)
\(=x\sqrt{\left(y+z\right)^2}=xy+xz\)
Tượng tự: \(y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}=xy+yz;z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}=xz+yz\)
Do đó: \(A=2\left(xy+yz+zx\right)=2.1=2\)
ĐS:...
Bài này hình như x,y,z>0
Ta có: \(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}=x\sqrt{\frac{\left(y^2+xy+yz+zx\right)\left(z^2+xy+yz+zx\right)}{\left(x^2+xy+yz+zx\right)}}=x\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}\)
Tương tự: \(y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}=y\sqrt{\left(x+z\right)^2}\)
\(z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}=z\sqrt{\left(x+y\right)^2}\)
Cộng từng vế, ta có:
\(A=x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)\)
\(\Leftrightarrow A=2\left(xy+yz+zx\right)=2\)
\(\hept{\begin{cases}1+y^2=y^2+xy+yz+zx=\left(x+y\right)\left(y+z\right)\\1+z^2=\left(z+x\right).\left(z+y\right)\\1+x^2=\left(x+y\right)\left(x+z\right)\end{cases}}\)
Thế vào \(A=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)
\(=x\left|y+z\right|+y\left|x+z\right|+z\left|x+y\right|\)
\(=2\left(\left|xy\right|+\left|yz\right|+\left|zx\right|\right)\)
Nếu x,y,z\(\ge0\Rightarrow A=2\)
Nếu x,y,z\(< 0\)\(\Rightarrow A=-2\)
a) Ta có : \(1+x^2=xy+yz+zx+x^2=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(z+x\right)\)
b) \(\Sigma\left(x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}\right)=\Sigma\left(x\sqrt{\dfrac{\left(x+y\right)\left(y+z\right).\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}\right)\)
\(=\Sigma\left(x\left(y+z\right)\right)=xy+xz+xy+yz+zx+zy=2\left(xy+yz+zx\right)=2\)