Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hmm trong đề làm gì có z vậy bạn ?????
\(\Leftrightarrow\left(\dfrac{1}{1+x^2}-\dfrac{1}{1+xy}\right)+\left(\dfrac{1}{1+y^2}-\dfrac{1}{1+xy}\right)\ge0\)
\(\Leftrightarrow\dfrac{1+xy-\left(1+x^2\right)}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{1+xy-\left(1+y^2\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\dfrac{-x\left(x-y\right)\left(1+y^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}+\dfrac{y\left(x-y\right)\left(1+x^2\right)}{\left(1+y^2\right)\left(1+x^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(-x+y-xy^2+x^2y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(xy-1\right)\ge0\left(\forall x;y\ge0\right)\)
Vậy \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
⇔ \(\left(\dfrac{1}{1+x^2}-\dfrac{1}{1+xy}\right)+\left(\dfrac{1}{1+y^2}-\dfrac{1}{1+xy}\right)\ge0\)
⇔ \(\left(\dfrac{1+xy-\left(1+x^2\right)}{\left(1+x^2\right)\left(1+xy\right)}\right)+\left(\dfrac{1+xy-\left(1+y^2\right)}{\left(1+y^2\right)\left(1+xy\right)}\right)\ge0\)
⇔ \(\left(\dfrac{1+xy-1-x^2}{\left(1+x^2\right)\left(1+xy\right)}\right)+\left(\dfrac{1+xy-1-y^2}{\left(1+y^2\right)\left(1+xy\right)}\right)\ge0\)
⇔ \(\dfrac{-x\left(x-y\right)}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{-y\left(y-x\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)
⇔ \(\dfrac{-x\left(x-y\right)\left(1+y^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}+\dfrac{y\left(x-y\right)\left(1+x^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)
=> -x(x-y)(1+y2)+y(x-y)(1+x2) ≥ 0
⇔ (x-y)[-x(1+y2)+y(1+x2)]≥0
⇔ (x-y)(-x-xy2+y+x2y) ≥0
⇔ (x-y)[-(x-y)+(x2y-y2x)] ≥ 0
⇔ (x-y)[-(x-y)+xy(x-y) ]≥ 0
⇔ (x-y)(x-y)(xy-1)≥ 0
⇔ (x-y)2 (xy-1) ≥0 (luôn đúng ∀ xy ≥ 1)
=> đpcm
bạn pải giả sử trước chứ nếu ntn thì người chấm hỏi ai cho lôi phần chứng minh ra làm phần mục đề
Ta có: \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
\(\Leftrightarrow\left(\dfrac{1}{1+x^2}-\dfrac{1}{1+y^2}\right)+\left(\dfrac{1}{1+y^2}-\dfrac{1}{xy}\right)\ge0\)
\(\Leftrightarrow\dfrac{xy-x^2}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{xy-y^2}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\dfrac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{y\left(x-y\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)
BĐT cuối đúng vì x.y > 0 => đpcm
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\) ( 1 )
\(\Leftrightarrow\left(\frac{1}{1+x^2}-\frac{1}{1+xy}\right)+\left(\frac{1}{1+y^2}-\frac{1}{1+xy}\right)\ge0\)
\(\Leftrightarrow\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y\left(x-y\right)}{\left(1+xy^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\frac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\) ( 2 )
\(\Rightarrow\)Bất đẳng thức ( 2 ) \(\Rightarrow\) Bất đẳng thức ( 1 )
( Dấu " = " xảy ra khi x = y )
Chúc bạn học tốt !!!
Ta có 1+x2+1+y2=2+x2+y2,2/1+xy=2+xy. Do 2=2 nên ta cần so sánh x2+y2 với xy với x,y>=1 và x,y thuộc R.
Già sử x<y thì xy<y2 và y2<x2+y2 nên xy<x2+y2 (1)
Giả sử x>y thì xy<x2và x2<x2+y2nên xy<x2+y2(2)
Giả sử x=y thì xy=x2=y2 và x2<x2+y2 nên xy<x2+y2(3)
Kết hợp 1,2,3 suy ra xy luôn bé hơn x2+y2 . Suy ra đpcm