Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho x > 0; y > 0 và 2x+3y < hoặc = 2. Tìm gtnn của biếu thức:
A =\(\frac{4}{4x^2+9y^2}+\frac{9}{xy}\)
Đặt \(\hept{\begin{cases}2x=a\left(a>0\right)\\3y=b\left(b>0\right)\end{cases}}\)
\(\Rightarrow2x+3y=a+b\le2,x.y=\frac{ab}{6}\)
\(\Rightarrow P=\frac{4}{a^2+b^2}+\frac{9}{\frac{ab}{6}}=\frac{4}{a^2+b^2}\ne\frac{54}{ab}\)
Vì \(a>0,b>0\)
Nên áp dụng BĐT cô-si ta có:\(a+b\ge2\sqrt{ab}\)
Mà \(a+b\le2\Rightarrow2\sqrt{ab}\le2\Rightarrow\sqrt{ab}\le1\Rightarrow ab\le1\)
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với x > 0 , y > 0
\(\Rightarrow\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge1\)
\(\Rightarrow\frac{4}{a^2+b^2}+\frac{4}{2ab}\ge4\)
\(\Rightarrow P=\frac{4}{a^2+b^2}+\frac{4}{2ab}+\frac{52}{ab}\)
\(P\ge4+52=56\)
\(\Rightarrow MinP=56\Leftrightarrow\hept{\begin{cases}a=b\\a+b=2\\a.b=1\end{cases}}\Leftrightarrow\hept{a=b=1\Leftrightarrow2x=3y=1\Leftrightarrow x=\frac{1}{2},y=\frac{1}{3}}\)
Theo cô-si thì \(2\sqrt{2x.3y}\le2x+3y\le2\Rightarrow xy\le\frac{1}{6}\)
\(A=\frac{4}{4x^2+9y^2}+\frac{9}{xy}=\frac{4}{4x^2+9y^2}+\frac{4}{12xy}+\frac{26}{3xy}\)
\(\ge\frac{\left(2+2\right)^2}{4x^2+9y^2+12xy}+\frac{26}{\frac{3.1}{6}}\)
\(=\frac{14}{\left(2x+3y\right)^2}+\frac{26.6}{3}=56\)
\("="\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\end{cases}}\)
ta thấy \(A=\frac{4}{4x^2+9y^2}+\frac{9}{xy}=\frac{4}{4x^2+9y^2}+\frac{4}{12xy}+\frac{26}{3xy}\ge\frac{16}{\left(2x+3y\right)^2}+\frac{26}{3xy}\)(1)
lại có \(2x+3y\le2\Leftrightarrow\left(2x+3y\right)^2\le4\Leftrightarrow4x^2+9y^2+12xy\le4\left(2\right)\)
mặt khác \(4x^2+9y^2\ge12xy\)(theo Bất Đẳng Thức Cosi cho x,y>0) (3)
từ (1) và (2) => \(12xy+12xy\le4\Leftrightarrow3xy\le\frac{1}{2}\left(4\right)\)
từ (1) và (4) => \(A\ge\frac{16}{4}+\frac{26}{\frac{1}{2}}=4+52=56\)
dấu "=" xảy ra khi \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\end{cases}}\)
\(A=\frac{4}{4x^2+9y^2}+\frac{4}{12xy}+\frac{52}{2x.3y}\)
\(A\ge\frac{16}{4x^2+9y^2+12xy}+\frac{52.4}{\left(2x+3y\right)^2}=\frac{224}{\left(2x+3y\right)^2}\ge\frac{224}{4}=56\)
\(A_{min}=56\) khi \(\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)
\(A=\frac{4}{4x^2+9y^2}+\frac{4}{12xy}+\frac{52}{2x.3y}\)
\(A\ge\frac{16}{4x^2+9y^2+12xy}+\frac{52.4}{\left(2x+3y\right)^2}\)
\(A\ge\frac{224}{\left(2x+3y\right)^2}\ge\frac{224}{4}=56\)
\(A_{min}=56\) khi \(\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)
Áp dụng bất dẳng thức AM-GM ta có:
\(A=\frac{4}{4x^2+9y^2}+\frac{4}{12xy}+\frac{208}{24xy}\ge\frac{\left(2+2\right)^2}{4x^2+9y^2+12xy}+\frac{208}{\left(2x+3y\right)^2}=\frac{16}{\left(2x+3y\right)^2}+\frac{208}{\left(2x+3y\right)^2}\ge\frac{16}{4}+\frac{208}{4}=56\)
Đẳng thức xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}2x=3y\\2x+3y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)
Vậy Amin = 56 \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)