K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2023

=���+�+1+�����+��+�+����2��+���+��

=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)

=�+��+1��+�+1

=1

8 tháng 4 2018

cũng bằng 3

12 tháng 3 2023

=���+�+1+�����+��+�+����2��+���+��

=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)

=�+��+1��+�+1

=1

 

 

AH
Akai Haruma
Giáo viên
28 tháng 5 2019

Lời giải:

\(yz-xz-xy=0\Rightarrow yz-xz=xy\)

\(B=\frac{yz}{x^2}-\frac{zx}{y^2}-\frac{xy}{z^2}\)\(=\frac{(yz)^3-(xz)^3-(xy)^3}{x^2y^2z^2}\)

Xét: \((yz)^3-(xz)^3-(xy)^3=(yz-xz)^3+3yz.xz(yz-xz)-(xy)^3\)

\(=(xy)^3+3yz.xz.xy-(xy)^3=3x^2y^2z^2\)

\(\Rightarrow B=\frac{(yz)^3-(xz)^3-(xy)^3}{x^2y^2z^2}=\frac{3x^2y^2z^2}{x^2y^2z^2}=3\)

21 tháng 5 2018

nhầm xíu nhá mk lm lại :

\(A=\frac{xz}{z\left(xy+x+1\right)}+\frac{xyz}{xz\left(yz+y+1\right)}+\frac{z}{xz+z+1}\)\(=\frac{xz}{xyz+xz+z}+\frac{1}{xyz^2+xyz+xz}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)

\(=\frac{xz+z+1}{xz+z+1}=1\)

21 tháng 5 2018

\(A=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}=\frac{xz}{z\left(xy+x+1\right)}+\frac{xyz}{xz\left(yz+y+1\right)}+\frac{z}{xz+z+1}\)

\(=\frac{xy}{xyz+xz+z}+\frac{1}{xyz^2+xyz+xz}+\frac{z}{xz+z+1}=\frac{xy}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)

\(=\frac{xy+1+z}{xz+z+1}=1\)

vậy A=1

13 tháng 8 2016

Bài 1 A=xyz+xz-zy-z+xy+x-y-1

thay các gtri x=-9, y=-21 và z=-31 vào là đc

=> A=-7680

Bài 2:a) n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2)
số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n

b) 49n+77n-29n-1

=\(49^n-1+77^n-29^n\)

=\(\left(49-1\right)\left(49^{n-1}+49^{n-2}+...+49+1\right)+\left(77-29\right)\left(79^{n-1}+..+29^n\right)\)

=48(\(49^{n-1}+...+1+77^{n-1}+...+29^{n-1}\))

=> tích trên chia hết 48

c) 35x-14y+29-1=7(5x-2y)+7.73

=7(5x-2y+73) tích trên chia hết cho 7

=. ĐPCM

12 tháng 3 2023

=���+�+1+�����+��+�+����2��+���+��

=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)

=�+��+1��+�+1

=1

7 tháng 1 2017

Từ \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\Rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{x+z}{xz}\)

\(\Rightarrow\frac{x}{xy}+\frac{y}{xy}=\frac{y}{yz}+\frac{z}{yz}=\frac{x}{xz}+\frac{z}{xz}\)

\(\Rightarrow\frac{1}{y}+\frac{1}{x}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\)

\(\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\).Khi đó 

\(P=\frac{20xy+4yz+2013xz}{x^2+y^2+z^2}=\frac{20x^2+4x^2+2013x^2}{x^2+x^2+x^2}=\frac{2037x^2}{3x^2}=679\)

6 tháng 1 2017

cho x,y>0 thỏa mãn \(^{x^2+y^2-xy=8}\)

tìm GTNN và GTNN của biểu thức M=\(^{x^2+y^2}\)