K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 5 2021

Cách đơn giản nhất là sử dụng phép biến đổi tương đương:

BĐT đã cho tương đương:

\(\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng.

Dấu "=" xảy ra khi x=y

10 tháng 7 2018

a) Áp dụng BĐT AM-GM ta có:

        \(x+y\ge2\sqrt{xy}\)

\(\Rightarrow\)\(\frac{x+y}{2}\ge\sqrt{xy}\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(x=y\)

b)  Áp dụng BĐT AM-GM ta có:

    \(\frac{\sqrt{x}}{\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{x}}\ge2\sqrt{\frac{\sqrt{x}}{\sqrt{y}}.\frac{\sqrt{y}}{\sqrt{x}}}=2\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(x=y\)

16 tháng 9 2018

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1^2}{x}+\frac{1^2}{y}+\frac{1^2}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)( Bất đẳng thức Svac-xơ )

Dấu = xảy ra khi \(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\)

23 tháng 6 2020

BĐT trên 

\(< =>\frac{xy+yz+xz}{xyz}\ge\frac{9}{x+y+z}\)

\(< =>\left(x+y+z\right)\left(xy+yz+xz\right)\ge9xyz\)

Áp dụng BĐT cô si cho 3 số :

\(x+y+z\ge3\sqrt[3]{xyz}\)

\(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}\)

Nhân vế với vế : \(\left(x+y+z\right)\left(xy+yz+xz\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{x^2y^2z^2}=9xyz\)

Nên ta có đpcm

23 tháng 10 2017

\(\sqrt{\dfrac{x}{y}}-2.\sqrt{\sqrt{\dfrac{x}{y}}}.\sqrt{\sqrt{\dfrac{y}{x}}}+\sqrt{\dfrac{y}{x}}+2.\sqrt{\sqrt{\dfrac{x}{y}}.\sqrt{\dfrac{y}{x}}}\)

=\(\left(\sqrt{\sqrt{\dfrac{x}{y}}}-\sqrt{\sqrt{\dfrac{y}{x}}}\right)^2+2\)

lớn hơn hoặc bằng 2

dấu = xảy ra <=>

\(\left(\sqrt{\sqrt{\dfrac{x}{y}}}-\sqrt{\sqrt{\dfrac{y}{x}}}\right)^2+2=2\)

=>\(\sqrt{\sqrt{\dfrac{x}{y}}}=\sqrt{\sqrt{\dfrac{y}{x}}}\)

=>\(\dfrac{x}{y}=\dfrac{y}{x}\)

=>x2=y2

=>x=y

8 tháng 11 2017

b/ \(a-\frac{1}{a}=\sqrt{a}+\frac{1}{\sqrt{a}}\)

\(\Leftrightarrow\sqrt{a}-\frac{1}{\sqrt{a}}=1\)

\(\Leftrightarrow a+\frac{1}{a}-2=1\)

\(\Leftrightarrow a+\frac{1}{a}=3\)

\(\Leftrightarrow a^2+\frac{1}{a^2}+2=9\)

\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2=5\)

\(\Leftrightarrow a-\frac{1}{a}=\sqrt{5}\)

8 tháng 11 2017

a/ Ta có: \(x=\frac{1-5y}{2}\) thê vô ta được

\(x^2+y^2=y^2+\left(\frac{1-5y}{2}\right)^2=\frac{29y^2-10y+1}{4}\)

\(=\frac{1}{116}\left(29^2y^2-290y+29\right)=\frac{1}{116}\left[\left(29^2y^2-2.29y.5+25\right)+4\right]\)

\(=\frac{1}{116}\left[\left(29y-5\right)^2+4\right]\ge\frac{4}{116}=\frac{1}{29}\)

6 tháng 4 2021

|a| + |b| >= |a+b| 

<=> (|a|+|b|)^2 >= |a+b|^2

<=> a^2+b^2 +2|ab| >= a^2+b^2+2ab

<=> |ab| >= ab (luôn đúng)

Dấu = xảy ra khi a,b cùng dấu

3 tháng 11 2021

|a| + |b| >= |a+b| 

<=> (|a|+|b|)^2 >= |a+b|^2

<=> a^2+b^2 +2|ab| >= a^2+b^2+2ab

<=> |ab| >= ab (luôn đúng)

Dấu = xảy ra khi a,b cùng dấu