Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)a)x+y=60
<=>(x+y)^2=3600
<=>x^2+2xy+y^2=3600(1)
mà xy=35 nên 2xy=2.35=70
(1)<=>x^2+70+y^2=3600
<=>x^2+y^2=3530
<=>(x^2+y^2)^2=12460900
<=>x^4+2x^2.y^2+y^4=12460900(2)
mà xy=35 nên 2x.x.y.y=2450
(2)<=>x^4+y^4=123458450
b)x+y=1
<=>(x+y)^3=1
<=>x^3+3x^2y+3xy^2+y^3=1
<=>x^3+y^3+3xy(x+y)=1
<=>x^3+y^3+3xy=1
=>M=1
x+y=1
<=>x^2+2xy+y^2=1(1)
B=x^3+y^3+3xy(x^2+y^2)+3xy(2xy)
=x^3+y^3+3xy(x^2+2xy+y^2)
=M.1=1(từ(1)
c)
x-y=1
<=>(x-y)^3=1
<=>x^3-3x^2y+3xy^2-y^3=1
<=>x^3-y^3-3xy(x-y)=1
<=>x^3-y^3-3xy=1
=>N=1
a) \(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2.\left(-6\right)=13\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1^3-3.\left(-6\right).1=19\)
\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)=13.19-\left(-6\right)^2.1=211\)
b) \(x^2+y^2=\left(x-y\right)^2+2xy=1^1+2.6=13\)
\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=1^3+3.6.1=19\)
\(x^5-y^5=\left(x^2+y^2\right)\left(x^3-y^3\right)+x^2y^2\left(x-y\right)=13.19+6^2.1=283\)
Lớp 8 nên sử dụng hằng đẳng thức
(=) X3 +3x2 +y3+5y2-x3-y3=0
(
x^3−y^3+z^3+3xyz
=(x−y)^3+z^3+3x2y−3xy2+3xyz
=(x−y+z)(x^2−2xy+y^2−zx+yz+z^2)+3xy(x−y+z)
=(x−y+z)(x^2+y^2+z^2+xy+yz−zx)
=12.(x−y+z)[(x+y)^2+(y+z)^2+(z−x)^2]
Thay vào biểu thức ta có:
\(\frac{\frac{1}{2}\left(x-y-z\right)\left[\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2\right]}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
=\(\frac{1}{2}\left(x+y+z\right)\)
Em kiểm tra lại đề bài nhé \(\frac{2}{x-y}\)hay \(\frac{2}{x-2}\)
a) (x-y)2-(x2-2xy)
=y2-2xy+x2-x2+2xy
=y2-(-2xy+2xy)+(x2-x2)
=y2
b)(x-y)2+x2+2xy-(x+y)2
=y2-2xy+x2+x2+2xy-y2-2xy-x2
=(y2-y2)-(2xy+2xy-2xy)+(x2+x2-x2)
=x2-2xy
lỡ tay bấm -_-; tiếp
F = \(-\left(\sqrt{2}.y-\frac{1}{8}\right)^2+\frac{1}{8}\)
Để F nhỏ nhất thì \(-\left(\sqrt{2}.y-\frac{1}{8}\right)^2\)nhỏ nhất=>\(\left(\sqrt{2}.y-\frac{1}{8}\right)^2=0\)
=> GTNN của F là 1/8 vs y= \(\frac{\sqrt{2}}{16}\)
bạn không cho \(x,y\)như thế nào thì tính sao được . Xem lại đề đi
\(x-y=5\Leftrightarrow\left(x-y\right)^2=25\)
\(\Leftrightarrow x^2-2xy+y^2=25\)
\(\Leftrightarrow15-2xy=25\)
\(\Leftrightarrow2xy=-10\)
\(\Leftrightarrow xy=-5\)
Từ đó : \(M=x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=5\cdot\left(15-5\right)=50\)
Vậy....
Thks nha.