Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a, x( x-y)+ y(x+y) tại x=-6 và y=8
= x\(^2\) + xy + xy - y\(^2\)
= x\(^2\) + 2xy - y\(^2\)
Thay x = 8 và y = 7
Ta có: (-8)\(^2\) + 2. (-8).7 - 7 \(^2\)
= -97
b, x(x22- y)- x22(x +y) +y( x22- x) tại x=\(\dfrac{1}{2}\)và y =-100
= x\(^3\) - xy + xy\(^2\) - xy - x\(^3\) - xy\(^2\)
= -2xy
Thay x = \(\dfrac{1}{2}\)và y =-100
Ta có: -2.\(\dfrac{1}{2}\) .(-100)
= 100
Bài 1,
a, 3x(12x-4)-9x(4x-3x)=30
\(\Leftrightarrow\)\(36x^2-12x-36x^2+27x^2=30\)
\(\Rightarrow15x=30\)
\(\Rightarrow x=2\)
Bài 2,
a, x(x-y)+y(x+y)
\(\Leftrightarrow x^2-xy+xy+y^2\)
\(\Rightarrow\)\(x^2+y^2\)
Tại x=-6 và y=8,ta có;
\(x^2+y^2=\left(-6\right)^2+8^2=36+64=100\)
b, x(\(x^2-y)-x^2\left(x+y\right)+y\left(x^2-x\right)\)
\(\Leftrightarrow x^3-xy-x^3-x^2y+x^2y-xy\)
\(\Rightarrow-2xy\)
Tại x=à y =(-100),Ta có
-2xy=-2.\(\dfrac{1}{2}\).-100=100
Bài 3:
a.x(x-y)+y(x-y)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\)
\(\Rightarrow\)\(x^2-y^2\)
Bài 2:
a: \(\Leftrightarrow4x^2-4x+1-4x^2-16x-16=9\)
=>-20x-15=9
=>-20x=24
=>x=-6/5
b: \(\Leftrightarrow3x^2-6x+3-3x^2+15x=21\)
=>9x=18
=>x=2
a: \(F=-\left(2x-y\right)^3-x\left(2x-y\right)^2-y^3\)
\(=-\left(2x-y\right)^2\cdot\left[2x-y+x\right]-y^3\)
\(=-\left(2x-y\right)^2\cdot\left(3x-y\right)-y^3\)
\(=\left(-4x^2+4xy-y^2\right)\left(3x-y\right)-y^3\)
\(=-12x^3+4x^2y+12x^2y-4xy^2-3xy^2+y^3-y^3\)
\(=-12x^3+16x^2y-7xy^2\)
\(\left(x-2\right)^2+y^2=0\)
mà \(\left(x-2\right)^2+y^2>=0\forall x,y\)
nên dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\y=0\end{matrix}\right.\)
=>x=2 và y=0
Thay x=2 và y=0 vào F, ta được:
\(F=-12\cdot2^3+16\cdot2^2\cdot0-7\cdot2\cdot0^2\)
\(=-12\cdot2^3\)
\(=-12\cdot8=-96\)
b: \(G=\left(x+y\right)\left(x^2-xy+y^2\right)+3\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=x^3+y^3+3\left(2x-y\right)\left[\left(2x\right)^2+2x\cdot y+y^2\right]\)
\(=x^3+y^3+3\left(8x^3-y^3\right)\)
\(=x^3+y^3+24x^3-3y^3\)
\(=25x^3-2y^3\)
Ta có: \(\left\{{}\begin{matrix}x+y=2\\y=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-3\\x=2-y=2-\left(-3\right)=2+3=5\end{matrix}\right.\)
Thay x=5 và y=-3 vào G, ta được:
\(G=25\cdot5^3-2\cdot\left(-3\right)^3\)
\(=25\cdot125-2\cdot\left(-27\right)\)
\(=3125+54=3179\)
c: \(H=\left(x+3y\right)\left(x^2-3xy+9y^2\right)+\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
\(=\left(x+3y\right)\left[x^2-x\cdot3y+\left(3y\right)^2\right]+\left(3x-y\right)\left[\left(3x\right)^2+3x\cdot y+y^2\right]\)
\(=x^3+27y^3+27x^3-y^3\)
\(=28x^3-26y^3\)
Ta có: \(\left\{{}\begin{matrix}3x-y=5\\x=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2\\y=3x-5=3\cdot2-5=1\end{matrix}\right.\)
Thay x=2 và y=1 vào H, ta được:
\(H=28\cdot2^3-26\cdot1^3\)
\(=28\cdot8-26\)
=198
a) = (x + 3)2 - y2 = (x + 3 - y)(x + 3 + y)
b) = x2(x - 3) -4(x - 3) = (x - 3)(x2 - 4) = (x - 3)(x - 2)(x + 2)
c) = 3x(x - y) - 5(x - y) = (x - y)(3x - y)
d) Nhầm đề. tui sửa lại x3 + y3 + 2x2 - 2xy + 2y2
= x3 + y3 + 2(x2 - xy + y2) = (x + y)(x2 - xy + y2) + 2(x2 - xy + y2) = (x2 - xy + y2)(x + y + 2)
e) = x4 - x3 - x3 + x2 - x2 + x + x - 1 = x3(x - 1) - x2(x - 1) - x(x - 1) + x - 1 = (x - 1)(x3 - x2 - x + 1) = (x - 1)(x - 1)(x2 - 1) = (x - 1)3(x + 1)
f) = x3 - 3x2 - x2 + 3x + 9x - 27 = x2(x - 3) - x(x - 3) + 9(x - 3) = (x-3)(x2 - x + 9)
g) chắc là 3xyz
= x2y + xy2 + y2z + yz2 + x2z + xz2 + 3xyz = x2y + xy2 + xyz + y2z + yz2 + xyz + x2z + xz2 + xyz = (x + y + z)(xy + yz + xz)
h) = 23 -(3x)3 = (2 - 3x)(4 + 6x + 9x2)
i) = (x + y - x + y)(x + y + x - y) = 2y*2x = 4xy
k) = (x3 - y3)(x3 + y3) = (x - y)(x2 + xy +y2)(x + y)(x2 - xy +y2).
Bài 1 :
a ) \(z\left(y-x\right)+y\left(x-z\right)+x\left(y+z\right)-2yz+100\)
\(=yz-xz+xy-yz+xy+xz-2yz+100\)
\(=2xy-2yz+100\) ( Đề sai )
b ) \(2y\left(y^2+y+1\right)-2y^2\left(y+1\right)-2\left(y+10\right)\)
\(=2y^3+2y^2+2y-2y^3-2y^2-2y-20\)
\(=-20\)
Vậy biểu thức không phụ thuộc vào biến .
Bài 2 :
a ) \(3x\left(12x-4\right)-9x\left(4x-3\right)=30\)
\(\Leftrightarrow36x^2-12x-36x^2+27x=30\)
\(\Leftrightarrow15x=30\)
\(\Leftrightarrow x=2\)
b ) \(2x\left(x-5\right)-x\left(2x+3\right)=x^2-x\left(x-1\right)\)
\(\Leftrightarrow2x^2-10x-2x^2-3x-x^2+x^2-x=0\)
\(\Leftrightarrow-14x=0\)
\(\Leftrightarrow x=0\)
Bài 2:
\(A=x^2+4y^2-2x+10-4xy-4y\)
\(=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)+10\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
Thay x + 2y = 5 vào biểu thức A ta được: \(A=5^2-2.5+10=25\)
\(B=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)\left(y-1\right)+y^2-2y+1\)
\(=x^2+4xy+4y^2-2xy+2x-4y^2+4y+y^2-2y+1\)
\(=x^2+2xy+y^2+2x+2y+1\)
\(=\left(x+y\right)^2+2\left(x+y\right)+1\)
Thay x + y = 5 vào biểu thức B ta được: \(B=5^2+2.5+1=25+10+1=36\)
\(C=x^2-y^2-4x=\left(x^2-4x+4\right)-y^2-4\)
\(=\left(x-2\right)^2-y^2-4\) \(=\left(x-y-2\right)\left(x-2+y\right)-4\)
Thay x + y = 2 vào C ta được: \(C=\left(x-2-y\right)\left(2-2\right)-4=0-4=-4\)
\(D=x^2+y^2+2xy-4x-4y-3\)
\(=\left(x+y\right)^2-4\left(x+y\right)-3\) Thay x + y = 4 vào D ta được:
\(D=4^2-4.4-3=16-16-3=-3\)
Bài 3:
a) \(N=-9x^2+12x-5=-\left(9x^2-12x+4\right)-1\)
\(=-\left(3x-2\right)^2-1\)
Do \(\left(3x-2\right)^2\ge0\) nên \(-\left(3x-2\right)^2-1< 0\)
Vậy N < 0
b) ghi đề cẩn thận lại đi, mk k hiểu