K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2017

Bài 2:

a, x( x-y)+ y(x+y) tại x=-6 và y=8

= x\(^2\) + xy + xy - y\(^2\)

= x\(^2\) + 2xy - y\(^2\)

Thay x = 8 và y = 7

Ta có: (-8)\(^2\) + 2. (-8).7 - 7 \(^2\)

= -97

b, x(x22- y)- x22(x +y) +y( x22- x) tại x=\(\dfrac{1}{2}\)và y =-100

= x\(^3\) - xy + xy\(^2\) - xy - x\(^3\) - xy\(^2\)

= -2xy

Thay x = \(\dfrac{1}{2}\)và y =-100

Ta có: -2.\(\dfrac{1}{2}\) .(-100)

= 100

22 tháng 8 2017

Bài 1,

a, 3x(12x-4)-9x(4x-3x)=30

\(\Leftrightarrow\)\(36x^2-12x-36x^2+27x^2=30\)

\(\Rightarrow15x=30\)

\(\Rightarrow x=2\)

Bài 2,

a, x(x-y)+y(x+y)

\(\Leftrightarrow x^2-xy+xy+y^2\)

\(\Rightarrow\)\(x^2+y^2\)

Tại x=-6 và y=8,ta có;

\(x^2+y^2=\left(-6\right)^2+8^2=36+64=100\)

b, x(\(x^2-y)-x^2\left(x+y\right)+y\left(x^2-x\right)\)

\(\Leftrightarrow x^3-xy-x^3-x^2y+x^2y-xy\)

\(\Rightarrow-2xy\)

Tại x=à y =(-100),Ta có

-2xy=-2.\(\dfrac{1}{2}\).-100=100

Bài 3:

a.x(x-y)+y(x-y)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\)

\(\Rightarrow\)\(x^2-y^2\)

19 tháng 10 2023

a) M = (x² + 3xy - 3x³) + (2y³ - xy + 3x³)

= x² + 3xy - 3x³ + 2y³ - xy + 3x³

= x² + (3xy - xy) + (-3x³ + 3x³) + 2y³

= x² + 2xy + 2y³

Tại x = 5 và y = 4

M = 5² + 2.5.4 + 2.4³

= 25 + 40 + 2.64

= 65 + 128

= 193

b) N = x²(x + y) - y(x² - y²)

= x³ + x²y - x²y + y³

= x³ + (x²y - x²y) + y³

= x³ + y³

Tại x = -6 và y = 8

N = (-6)³ + 8³

= -216 + 512

= 296

c) P = x² + 1/2 x + 1/16

= (x + 1/2)²

Tại x = 3/4 ta có:

P = (3/4 + 1/2)² = (5/4)² = 25/16

14 tháng 6 2018

mình biết câu b rồi nhưng câu a thì chưa!

  b) x^3(x+y)-x^2(x^2+xy)-x(x-y)

    =x^4+x^3y-x^4-x^3y-x^2+xy

    =-x^2+xy tại x=10,y=-5 ta có;

     =-10^2+10(-5)

    = 50

2 tháng 10 2018

Bài 1:

a.\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=2\left(x+y\right)\)

b.\(2\left(x+y\right)\left(x-y\right)+\left(x+y\right)^2+\left(x-y\right)^2=\left(x+y+x-y\right)^2=4x^2\)

20 tháng 12 2020

a/ \(A=20x^3-10x^2+5x-20x^3+10x^2+4x=9x\)

Thay x = 15 vào bt A ta có

A = 9 . 15 = 135

b/ \(B=5x^2-20xy-4y^2+2xy=5x^2-4y^2\)

Thay x = -1/5 ; y = - 1/2 vào bt B ta có

\(B=5.\dfrac{1}{25}-4.\dfrac{1}{4}=\dfrac{1}{5}-1=-\dfrac{4}{5}\)

c/ \(C=6x^2y^2-6xy^3-8x^3+8x^2y^2-5x^2y^2+5xy^3\)

\(=9x^2y^2-xy^3-8x^3\)

Thay x = 1/2 ; y = 2 vào bt C ta có

\(C=9.4.\dfrac{1}{4}-\dfrac{1}{2}.8-8.\dfrac{1}{8}=9-4-1=4\)

d/ \(D=6x^2+10x-3x-5+6x^2-3x+8x-2\)

\(=12x^2+12x-3\)

\(\left|x\right|=2\Rightarrow x=\pm2\)

Thay x = 2 vào bt D có

\(D=12.4+12.2-3=69\)

Thay x = - 2 vào bt D ta có

\(D=12.4-12.2-3=21\)

19 tháng 6 2015

a) \(=x^2-xy+xy+y^2=x^2+y^2\)tự thay rồi tính nha

b) \(=x^3-xy-x^3-x^2y+x^2y-xy=-2xy\) tự thay vào nha

a) x(x – y) + y (x + y) = x2 – xy +yx + y2= x2+ y2

với x = -6, y = 8 biểu thức có giá trị là (-6)2 + 82 = 36 + 64 = 100

b) x(x2 – y) – x2 (x + y) + y (x2– x) = x3 – xy – x3 – x2y + yx2 – yx= (2x-2y) – (x2 -2xy +y2) =2(x-y) – (x-y)2

Với x =1/2, y = -100 biểu thức có giá trị là -2 . 1/2. (-100) = 100.

Bài 2:

a: Ta có: \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)

\(\Leftrightarrow10x-16-12x+15=12x-16+11\)

\(\Leftrightarrow-14x=-4\)

hay \(x=\dfrac{2}{7}\)

b: Ta có: \(2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\)

\(\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\)

\(\Leftrightarrow x^3=-8\)

hay x=-2

Bài 1: 

a: Ta có: \(I=x\left(y^2-xy^2\right)+y\left(x^2y-xy+x\right)\)

\(=xy^2-x^2y^2+x^2y^2-xy^2+xy\)

\(=xy\)

=1

b: Ta có: \(K=x^2\left(y^2+xy^2+1\right)-\left(x^3+x^2+1\right)\cdot y^2\)

\(=x^2y^2+x^3y^2+x^2-x^3y^2-x^2y^2-y^2\)

\(=x^2-y^2\)

\(=\dfrac{1}{4}-\dfrac{1}{4}=0\)

25 tháng 10 2023

Bài 1: 

a, (\(x\) - 4).(\(x\) + 4) - (5 - \(x\)).(\(x\) + 1)

\(x^2\) -  16 - 5\(x\) - 5 + \(x^2\) + \(x\) 

= (\(x^2\) + \(x^2\)) - (5\(x\) - \(x\)) - (16 + 5)

= 2\(x^2\) - 4\(x\) - 21

25 tháng 10 2023

b, (3\(x^2\) - 2\(xy\) + 4) + (5\(xy\) - 6\(x^2\) - 7)

=  3\(x^2\) - 2\(xy\) + 4 + 5\(xy\) - 6\(x^2\) - 7

= (3\(x^2\) - 6\(x^2\)) + (5\(xy\) - 2\(xy\)) - (7 - 4)

= - 3\(x^2\) + 3\(xy\) - 3

a) Ta có: \(\left(3x-2\right)^2+2\left(3x-2\right)\left(3x+2\right)+\left(3x+2\right)^2\)

\(=\left(3x-2+3x+2\right)^2\)

\(=36x^2\)(1)

Thay \(x=-\dfrac{1}{3}\) vào biểu thức (1), ta được:

\(36\cdot\left(-\dfrac{1}{3}\right)^2=36\cdot\dfrac{1}{9}=4\)

b) Sửa đề: \(\left(x+y-7\right)^2-2\cdot\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)

Ta có: \(\left(x+y-7\right)^2-2\cdot\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)

\(=\left(x+y-7-y+6\right)^2\)

\(=\left(x-1\right)^2=100^2=10000\)