Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
=> x = y = z
Ta có: \(A=\frac{2013x^2+y^2+z^2}{x^2+2013y^2+z^2}=\frac{2013x^2+x^2+x^2}{x^2+2013x^2+x^2}=\frac{2015x^2}{2015x^2}=1\)
\(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)\(=\left(\frac{x+y}{y}\right)\left(\frac{y+z}{z}\right)\left(\frac{z+x}{x}\right)\)
Xét 2 TH
+> Nếu \(x+y+z=0\)
=> \(\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)
=> \(A=\left(-\frac{z}{y}\right)\left(-\frac{x}{z}\right)\left(-\frac{y}{x}\right)=-1\)
+> Nếu \(x+y+z\ne0\)
\(\frac{x+y+2013z}{z}=\frac{y+z+2013x}{x}=\frac{x+z+2013y}{y}\)
=> \(\frac{x+y}{z}+2013=\frac{y+z}{x}+2013=\frac{z+x}{y}+2013\)
=>\(\frac{x+y}{z}=\frac{y+z}{x}=\frac{z+x}{y}\)\(=\frac{x+y+y+z+z+x}{x+y+z}=2\)
=> \(\hept{\begin{cases}x+y=2z\\y+z=2x\\z+x=2y\end{cases}}\)
=> A = 2.2.2=8
Ta có :
\(A=\frac{x+y+2013z}{z}=\frac{y+z+2013x}{x}=\frac{x+z+2013}{y}\)
\(\Leftrightarrow A=\frac{x+y}{z}+2013=\frac{y+z}{x}+2013=\frac{x+z}{y}+2013=2015\)( Chỗ này áp dụng Tc của dãy tỉ số bằng nhau là ra )
\(\Leftrightarrow\frac{x+y}{z}=\frac{y+z}{x}=\frac{x+z}{y}=2\)
\(\Rightarrow\hept{\begin{cases}x+y=2z\\y+z=2x\\x+z=2y\end{cases}}\)
Thay vào ta có :
\(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
\(=\left(\frac{x+y}{y}\right)\left(\frac{y+z}{z}\right)\left(\frac{x+z}{x}\right)\)
\(=\frac{2z.2x.2y}{xyz}=\frac{8xyz}{xyz}=8\)
Vậy ...........
a) theo tính chất của dãy tỉ số bằng nhau có
\(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}=\frac{x-y-z-x+y-z-x-y+z}{x+y+z}=\frac{-\left(x+y+z\right)}{x+y+z}=-1\)
=> x - y - z = - x => 2.x = y + z
y - x - z = - y => 2.y = x+z
z - x - y = - z => 2.z = x+y
Ta có: \(A=\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)=\frac{x+y}{x}.\frac{y+z}{y}.\frac{z+x}{z}=\frac{2z}{x}.\frac{2x}{y}.\frac{2y}{z}=\frac{2xyz}{xyz}=2\)
b) Vì \(\left|x+3y-1\right|\ge0\); \(-3\left|y+3\right|\le0\)
=> \(\left|x+3y-1\right|=-3\left|y+3\right|\) khi \(\left|x+3y-1\right|=-3\left|y+3\right|=0\)
=> x+ 3y - 1 = 0 và y + 3 = 0
=> x = 1 - 3y và y = -3 => x = 1- 3(-3) = 10; y = -3
=> C = 4.102.(-3) + 2.10.(-3)2 - (-3)2 = -1029