Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT AM-GM:
$1=xy+yz+xz+2xyz\leq \frac{(x+y+z)^2}{3}+2.\frac{(x+y+z)^3}{27}$
$\Leftrightarrow 1\leq \frac{t^2}{3}+\frac{2t^3}{27}$ (đặt $x+y+z=t$)
$\Leftrightarrow 2t^3+9t^2-27\geq 0$
$\Leftrightarrow (t+3)^2(2t-3)\geq 0$
$\Leftrightarrow 2t-3\geq 0$
$\Leftrightarrow t\geq \frac{3}{2}$ hay $x+y+z\geq \frac{3}{2}$ (đpcm)
Dấu "=" xảy ra khi $x=y=z=\frac{1}{2}$
Vì x;y;z là 3 cạnh của tam giác
=> \(x+y>z\)
\(\Rightarrow x+y+z>z+z\)
\(\Rightarrow x+y+z>2z\)
\(\Rightarrow2>2z\Rightarrow z< 1\)
Chứng minh tương tự ta được: x < 1 ; y < 1
\(\Rightarrow1-x>0;1-y>0;1-z>0\)
\(\Rightarrow\left(1-x\right)\left(1-y\right)\left(1-z\right)>0\)
\(\Rightarrow\left(1-y-x+xy\right)\left(1-z\right)>0\)
\(\Rightarrow1-y-x+xy-z+yz+xz-xyz>0\)
\(\Rightarrow1-\left(x+y+z\right)+xy+yz+xz-xyz>0\)
\(\Rightarrow1-2+xy+yz+xz-xyz>0\)
\(\Rightarrow-1+xy+yz+xz-xyz>0\)
\(\Rightarrow2\left(-1+xy+yz+xz-xyz\right)>0\)
\(\Rightarrow-2+2xy+2yz+2xz-2xyz>0\)
\(\Rightarrow-\left(2-2xy-2yz-2xz+2xyz\right)>0\)
\(\Rightarrow2-2xy-2yz-2xz+2xyz< 0\)
\(\Rightarrow4-2xy-2yz-2xz+2xyz< 2\)
\(\Rightarrow\left(x+y+z\right)^2-2xy-2yz-2xz+2xyz< 2\) (Vì x+y+z = 2 => (x+y+z)2 = 22 = 4)
\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2xz-2xy-2yz-2xz+2xyz< 2\)
\(\Rightarrow x^2+y^2+z^2+2xyz< 2\)
=> đpcm
Điều kiện là x;y;z dương
\(VT=\frac{1}{x^2+yz}+\frac{1}{y^2+zx}+\frac{1}{z^2+xy}\le\frac{1}{2\sqrt{xy.xz}}+\frac{1}{2\sqrt{xy.yz}}+\frac{1}{2\sqrt{zx.yz}}\)
\(VT\le\frac{1}{4}\left(\frac{1}{xy}+\frac{1}{xz}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}+\frac{1}{yz}\right)=\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\frac{x+y+z}{2xyz}\)
Dấu "=" xảy ra khi \(x=y=z\)
Bài này x;y;z phải dương chứ nhỉ? Có dấu "=" ở số 0 thế kia thì bối rối quá
Dự đoán dấu "=" xảy ra tại \(x=y=z=\frac{1}{2}\)
Theo nguyên lý Dirichlet, trong 3 số x;y;z luôn tồn tại 2 số nằm cùng phía so với \(\frac{1}{2}\) ; giả sử đó là x và y
\(\Rightarrow\left(x-\frac{1}{2}\right)\left(y-\frac{1}{2}\right)\ge0\Leftrightarrow\frac{1}{2}\left(x+y\right)-xy\le\frac{1}{4}\)
\(\Leftrightarrow x+y-2xy\le\frac{1}{2}\)
Mặt khác:
\(1=2xyz+x^2+y^2+z^2\ge2xyz+2xy+z^2=2xy\left(1+z\right)+z^2\)
\(\Rightarrow1-z^2\ge2xy\left(1+z\right)\Leftrightarrow\left(1-z\right)\left(1+z\right)\ge2xy\left(1+z\right)\)
\(\Leftrightarrow1-z\ge2xy\Rightarrow xy\le\frac{1-z}{2}\)
\(\Rightarrow P=xy+z\left(x+y-2xy\right)\le\frac{1-z}{2}+\frac{z}{2}=\frac{1}{2}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)
Ta có:
P=\(\left(X^2+y^2+z^2+2xyz\right)-\left(X^2+y^2+z^2+4xyz-xy-yz-xz\right)\) xz)
= 1-\(\left(x^2+y^2+z^2+4xyz-xy-yz-xz\right)\)
=> P \(\le\)1
Vậy MaxP=1
Ta có: \(a^5+b^5\ge a^2b^2\left(a+b\right)\)
\(\Leftrightarrow a^5+b^5+2abc\ge a^2b^2\left(a+b\right)+2abc\)
\(\ge ab\left[ab\left(a+b\right)+2c\right]\ge ab\left[2\left(a+b\right)+2c\right]=2ab\left(a+b+c\right)\) (áp dụng với \(a,b,c\ge\sqrt{2}\))
\(\Rightarrow\frac{1}{a^5+b^5+2abc}\le\frac{1}{2ab\left(a+b+c\right)}\)
Áp dụng vào bài toán ta được
\(P\le\frac{1}{2xy\left(x+y+z\right)}+\frac{1}{2yz\left(x+y+z\right)}+\frac{1}{2zx\left(x+y+z\right)}\)
\(=\frac{x+y+z}{2xyz\left(x+y+z\right)}=\frac{1}{2xyz}\)