Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-xz-yz\right)-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\right]=0\)(Nhân hai vế với 2)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)
Tới đây bạn xét hai trường hợp nhé :)
(x+y+z)((X+Y)^2-Z(X+Y))-3XY(X+Y+Z)
=(X+Y+Z)(X^2+2XY+Y^2-XZ-YZ-3XY)
=(X+Y+Z)(X^2+Y^2+Z^2-XZ-YZ-XY)
Do \(x+y+z=0\) \(\Rightarrow x+y=-z\)
Ta có: \(\left(x^3+y^3\right)+z^3=\left(x+y\right)^3+z^3-3xy\left(x+y\right)\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(-z\right)=3xyz\)(do \(x+y+z=0\)).
ta có:
(x+y+z)3=0
x^3+y^3+z^3+3(x+y)(y+z)(z+x)=0 (1)
mà x+y+z=0 suy ra x+y= -z; y+z= -x; z+x= -y (2)
từ (1) và (2) suy ra
x^3+y^3+z^3+3(-z)(-x)(-y)=0
x^3+y^3+z^3-3xyz=0
x^3+y^3+z^3=3xyz(đpcm)
1) Ta có: \(x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)+ \(3xyz\)
Mà x+y+z=0
=> \(x^3+y^3+z^3=3xyz\)
( ko thể = 3xy2)
2) Ta có: \(A=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1\)
= \(\left(n+1\right)\left(n+4\right)\cdot\left(n+2\right)\left(n+3\right)+1\)
= \(\left(n^2+5n+4\right)\left(n^2+5n+6\right)+1\)
Đặt t= \(n^2+5n+5\)
=> A= \(\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2\) là 1 số chính phương.
a) Ta có:
x³ + y³ + z³ - 3xyz = (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz).
\(\text{Giải}\)
\(\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}+3=\left(\frac{y+z}{x}+1\right)+\left(\frac{x+z}{y}+1\right)+\left(\frac{x+y}{z}+1\right)\)
\(=\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{z}=\left(x+y+z\right)\left(\frac{1}{z}+\frac{1}{y}+\frac{1}{x}\right)\)
\(=0\left(\frac{1}{z}+\frac{1}{y}+\frac{1}{x}\right)=0\left(\text{đpcm}\right)\)
Đặt A = \(\frac{y+z}{x}+1+\frac{x+z}{y}+1+\frac{x+y}{z}+1\)
\(=\frac{y+z+x}{x}+\frac{x+z+y}{y}+\frac{x+y+z}{z}\)
\(=(x+y+z).(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})\)
\(=0.(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})(\)vì x + y + z = 0
\(=0\)
Vậy bất đẳng thức được chứng minh.
Áp dụng \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)
\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)
\(=x^3+y^3+3xy\left(x+y\right)+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3\)
\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)
\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)
\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
ta có:x+y+z=0
=>x,y,z là 3 số hạng giống nhau, 0^ bao nhiêu cũng bằng 0
Do đó, x^3+y^3+z^3=3xyz
Thật ra e ms lp 6 thui nên nghĩ sao nói vậy dù sao thì cũng có cái ý, đáp án cuối cùng là đúng, chỉ có trường hợp xảy ra là trình bày bài k chặt chẽ, nên là có lẽ người đưa ra bài toán này fai tìm cách giải chặt chẽ hơn, ok, nhưng nhớ là cũng k cho e đó