Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do x; y ; z > 0 nên xyz khác 0 => \(\frac{xy}{xyz}+\frac{yz}{xyz}+\frac{zx}{xyz}=1\Rightarrow\frac{1}{z}+\frac{1}{x}+\frac{1}{y}=1\Rightarrow\frac{1}{x}1\)
Vì x<= y< = z nên \(\frac{1}{x}\ge\frac{1}{y}\ge\frac{1}{z}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{x}+\frac{1}{x}+\frac{1}{x}=\frac{3}{x}\)
=> 1 < = 3/x => x < = 3 mà x > 1 nên x = 2 hoặc 3
Nếu x = 2 => \(\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\Rightarrow\frac{1}{y}2;\frac{1}{y}+\frac{1}{z}\le\frac{2}{y}\Rightarrow\frac{2}{y}\ge\frac{1}{2}\Rightarrow y\le4\)
mà y >2 => y = 3 hoặc 4
y = 3 => z = 6;
y = 4 => z = 4
nếu x = 3 => \(\frac{1}{y}+\frac{1}{z}=\frac{2}{3}\Rightarrow\frac{1}{y}\frac{3}{2};\frac{1}{y}+\frac{1}{z}\le\frac{2}{y}\Rightarrow\frac{2}{y}\ge\frac{2}{3}\Rightarrow y\le3\)
theo đề bài x<= y nên y = 3 => z = 3
Vậy (x;y;z) = (3;3;3); (2;3;6);(2;4;4)
Lời giải:
Đặt \(\left(\frac{xy}{z}; \frac{yz}{x}; \frac{xz}{y}\right)=(a,b,c)\)
\(\Rightarrow \left\{\begin{matrix} y^2=ab\\ x^2=ac\\ z^2=bc\end{matrix}\right.\)
Bài toán trở thành: Cho $a,b,c>0$ thỏa mãn \(ab+bc+ac=1\)
Tìm min $S=a+b+c$
Theo hệ quả quen thuộc của BĐT Cauchy: \((a+b+c)^2\geq 3(ab+bc+ac)\)
\(\Rightarrow S=\sqrt{(a+b+c)^2}\geq \sqrt{3(ab+bc+ac)}=\sqrt{3}\)
Vậy \(S_{\min}=\sqrt{3}\Leftrightarrow a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
Lời giải:
Đặt \(\left(\frac{xy}{z}; \frac{yz}{x}; \frac{xz}{y}\right)=(a,b,c)\)
\(\Rightarrow \left\{\begin{matrix} y^2=ab\\ x^2=ac\\ z^2=bc\end{matrix}\right.\)
Bài toán trở thành: Cho $a,b,c>0$ thỏa mãn \(ab+bc+ac=1\)
Tìm min $S=a+b+c$
Theo hệ quả quen thuộc của BĐT Cauchy: \((a+b+c)^2\geq 3(ab+bc+ac)\)
\(\Rightarrow S=\sqrt{(a+b+c)^2}\geq \sqrt{3(ab+bc+ac)}=\sqrt{3}\)
Vậy \(S_{\min}=\sqrt{3}\Leftrightarrow a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
*Xét 0<x<y<z
Ta thấy: xy<yz (x<z)
zx<yz (x<y)
=>xy+yz+zx=xyz<zy+zy+zy
=>xyz<3zy
=>x<3 mà 0<x<3
=>x=1;2
-Nếu x=1
=>y+yz+z=yz
=>y+z =yz-yz
=>y+z =0
mà 0<y<z
=>Vô lí
-Nếu x=2
=>2y+yz+2z=2yz
=>2y+2z =2yz-yz
=>2.(y+z) =yz
Ta thấy: y<z
=>2.(y+z)=yz<2.(z+z)
=>yz<4z
=>y<4 mà 2<y<4
=>y=3
=>2.3+3z+2z=2.3.z
=>6+5z =6z
=>z =6
*Xét0<x=y=z
=>xx+xx+xx=xxx
=>3xx =xxx
=>x =3
=>x=y=z=3
Vậy x=2;y=3;z=6
x=3;y=3;z=3
xy . yz . zx = (-18).48.(-24)
x2y2z2 = 20736
xyz = \(\sqrt{20736}\)= 144
=> z = \(\frac{xyz}{xy}=\frac{144}{-18}=-8\)
x = \(=\frac{xyz}{yz}=\frac{144}{48}=3\)
y = \(\frac{xyz}{xz}=\frac{144}{-24}=-6\)
vậy ...
Giải
Theo đề bài, ta có: \(\hept{\begin{cases}xy=-18\\yz=48\\zx=-24\end{cases}\Rightarrow\left(xy\right).\left(yz\right).\left(zx\right)=\left(-18\right).48.\left(-24\right)}\)
\(\Leftrightarrow x^2y^2z^2=20736\)
\(\Leftrightarrow\left(xyz\right)^2=20736\)
\(\Leftrightarrow xyz=\pm144\)
\(TH1:xyz=-144\)
\(\Rightarrow\hept{\begin{cases}z=-144\div\left(-18\right)=8\\x=-144\div48=-3\\y=-144\div\left(-24\right)=6\end{cases}}\)
\(TH2:xyz=144\)
\(\Rightarrow\hept{\begin{cases}z=144\div\left(-18\right)=-8\\x=144\div48=3\\y=144\div\left(-24\right)=-6\end{cases}}\)