K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2018

Nhầm CMR x + y =< 4 leuleu

2 tháng 6 2018

Áp dụng BĐT Bunhiacopxki , ta có :

\(\left(x^2+y^2\right)\left(1^2+1^2\right)\ge\left(x+y\right)^2\)

\(x+y\le\sqrt{16}\)

⇔ x + y ≤ 4

Đẳng thức xảy ra khi : x = y = 2

3 tháng 6 2018

Áp dụng BĐT Bunhiacopski ta có :

\(\left(1.x+1.y\right)^2\le\left(1^2+1^2\right)\left(x^2+y^2\right)=2.8=16\)

=> \(x+y\le4\)

Dấu " =" xảy ra khi \(x=y=2\).

16 tháng 6 2016

\(\frac{x}{1998}=\frac{y}{1999}=\frac{z}{2000}=t=\frac{x-z}{1998-2000}=\frac{x-y}{1998-1999}=\frac{y-z}{1999-2000}.\)

Hay: \(\frac{x-z}{-2}=\frac{x-y}{-1}=\frac{y-z}{-1}\Rightarrow x-z=2\left(x-y\right)=2\left(y-z\right)\)(1)

a) \(\left(x-z\right)^3=\left(x-z\right)^2\left(x-z\right)=\left(2\left(x-y\right)\right)^2\left(2\left(y-z\right)\right)\)

\(\Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\)ĐPCM a)

b) Từ (1) => x + z = 2y 

Để \(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\Rightarrow\frac{x+y}{\frac{1}{2}}=\frac{y+z}{\frac{1}{5}}=\frac{z+x}{\frac{1}{3}}\)

Từ \(\Rightarrow\frac{x+y}{\frac{1}{2}}=\frac{y+z}{\frac{1}{5}}=\frac{x+y+y+z}{\frac{1}{2}+\frac{1}{5}}=\frac{4y}{\frac{7}{10}}=\frac{2y}{\frac{1}{3}}\)

=>y=0 =>x=0 => z=0 Suy ra hệ thức: x-y/4=y-z/5 luôn đúng. ĐPCM

17 tháng 6 2016

Bạn đinh thùy linh trả lời rõ ràng hơn được ko 

13 tháng 2 2020

Tìm giá trị nhỏ nhất của biểu thức A = /x+1/ + /x-2017/ với x là số nguyên

6 tháng 6 2018

viết đề bài chưa rõ ràng

6 tháng 6 2018

có bạn sai thì có, đề bài thầy giáo tôi ra đó

25 tháng 7 2016

ko ai giúp tôi à

25 tháng 4 2017

trời sao khó thế

3 tháng 12 2021

\(\dfrac{x}{2018}=\dfrac{y}{2019}=\dfrac{x-y}{-1};\dfrac{y}{2019}=\dfrac{z}{2020}=\dfrac{y-z}{-1};\dfrac{x}{2018}=\dfrac{z}{2020}=\dfrac{x-z}{-2}\\ \Leftrightarrow\dfrac{x-y}{-1}=\dfrac{y-z}{-1}=\dfrac{x-z}{-2}\\ \Leftrightarrow2\left(x-y\right)=2\left(y-z\right)=x-z\\ \Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^3=8\left(x-y\right)^2\left(x-y\right)=8\left(x-y\right)^2\left(y-z\right)\)

AH
Akai Haruma
Giáo viên
20 tháng 10 2023

Lời giải:

Đặt $\frac{x}{2018}=\frac{y}{2019}=\frac{z}{2020}=a$

$\Rightarrow x=2018a; y=2019a; z=2020a$

$\Rightarrow (x-z)^3=(2018a-2020a)^3=(-2a)^3=-8a^3(1)$

Mặt khác:

$8(x-y)^2(y-z)=8(2018a-2019a)^2(2019a-2020a)=8a^2.(-a)=-8a^3(2)$

Từ $(1); (2)$ ta có đpcm.