K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2019

Bạn ơi hình như đề sai ạ

Bạn thử một cặp x,y vào sẽ thấy ạ

8 tháng 8 2019

Theo mk nghĩ đề đúng thì chắc cách giải như zầy

\(\Rightarrow\hept{\begin{cases}x+\sqrt{1+x^2}=\frac{1}{y+\sqrt{1+y^2}}\\y+\sqrt{1+y^2}=\frac{1}{x+\sqrt{1+x^2}}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x+\sqrt{1+x^2}-\sqrt{1+y^2}+y=0\\y+\sqrt{1+y^2}-\sqrt{1+x^2}+x=0\end{cases}}\)

\(\Leftrightarrow2x+2y=0\Leftrightarrow x+y=0\)

28 tháng 2 2020

\(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

Nhân hai vế của đẳng thức với: \(\sqrt{x^2+1-x}\) 

Ta được: \(\left(x+\sqrt{x^2+1}\right)\left(\sqrt{x^2+1}-x\right)\left(y+\sqrt{y^2+1}\right)=\sqrt{x^2+1}-x\)

\(\Leftrightarrow y+\sqrt{y^2+1}=\sqrt{x^2+1}-x\)

\(\Leftrightarrow x+y=\sqrt{x^2+1}-\sqrt{y^2+1}\left(1\right)\)

Mặt khác ta có: \(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

Nhân hai vế của đẳng thức với: \(\sqrt{y^2+1}-y\)

Ta được: \(\left(x+\sqrt{x^2+1}\right)\left(\sqrt{y^2+1}-y\right)\left(\sqrt{y^2+1}+y\right)=\sqrt{y^2+1}-y\)

\(\Leftrightarrow x+\sqrt{x^2+1}=\sqrt{y^2+1}-y\)

\(\Leftrightarrow x+y=\sqrt{y^2+1}-\sqrt{x^2+1}\left(2\right)\)

Từ: \(\left(1\right)\left(2\right)\Rightarrow x+y=0\left(đpcm\right)\)

NV
24 tháng 1 2022

\(\sqrt{x\left(1-y\right)\left(1-z\right)}=\sqrt{x\left(yz-y-z+1\right)}=\sqrt{x\left(yz-y-z+x+y+z+2\sqrt{xyz}\right)}\)

\(=\sqrt{x\left(yz+x+2\sqrt{xyz}\right)}=\sqrt{x^2+2x\sqrt{xyz}+xyz}=\sqrt{\left(x+\sqrt{xyz}\right)^2}\)

\(=x+\sqrt{xyz}\)

Tương tự: \(\sqrt{y\left(1-x\right)\left(1-z\right)}=y+\sqrt{xyz}\) ; \(\sqrt{z\left(1-x\right)\left(1-y\right)}=z+\sqrt{xyz}\)

\(\Rightarrow VT=x+y+z+3\sqrt{xyz}=1-2\sqrt{xyz}+3\sqrt{xyz}=1+\sqrt{xyz}\) (đpcm)

áp dụng cauchy ngược dấu là xong nhé bạn :>> mình ko đánh đc sorry bạn

24 tháng 10 2021

Áp dụng BĐT Bunhiacopski:

Đặt \(A=x\sqrt{16-y}+\sqrt{y\left(16-x^2\right)}\)

\(\Leftrightarrow A^2=\left[x\sqrt{16-y}+\sqrt{y\left(16-x^2\right)}\right]^2\le\left(x^2+16-x^2\right)\left(16-y+y\right)\\ \Leftrightarrow A^2\le16\cdot16=256\\ \Leftrightarrow A\le16\\ A_{max}=16\Leftrightarrow\dfrac{x^2}{16-x^2}=\dfrac{16-y}{y}\Leftrightarrow x^2y=256-16y-16x^2+x^2y\\ \Leftrightarrow16x^2+16y-256=0\\ \Leftrightarrow x^2+y-16=0\\ \Leftrightarrow x^2=16-y\Leftrightarrow x=\sqrt{16-y}\)

AH
Akai Haruma
Giáo viên
29 tháng 5 2023

Chứng minh gì bạn?

NV
18 tháng 5 2021

Đề bài sai, phản ví dụ:

Với \(x=1;y=0\) thì x;y thỏa mãn \(\left(x+1\right)\left(y+1\right)=2\)

Nhưng \(P=1-\sqrt{6}\) không phải số nguyên

 

18 tháng 5 2021

Cảm ơn đã góp ý ạ

 

NV
27 tháng 7 2020

\(\left(x+1+\sqrt{\left(x+1\right)^2+1}\right)\left(y-1+\sqrt{\left(y-1\right)^2+1}\right)=0\) (1)

Nhân 2 vế với \(\sqrt{\left(x+1\right)^2+1}-\left(x+1\right)\) và rút gọn

\(\Rightarrow y-1+\sqrt{\left(y-1\right)^2+1}=\sqrt{\left(x+1\right)^2+1}-\left(x+1\right)\) (2)

Nhân 2 vế của (1) với \(\sqrt{\left(y-1\right)^2+1}-\left(y-1\right)\) và rút gọn

\(\Rightarrow x+1+\sqrt{\left(x+1\right)^2+1}=\sqrt{\left(y-1\right)^2+1}-\left(y-1\right)\) (3)

Cộng vế với vế (2) và (3) và rút gọn:

\(\Rightarrow y+x=-x-y\)

\(\Leftrightarrow2\left(x+y\right)=0\Rightarrow x+y=0\)

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá