K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 8 2021

Do \(x^2+y^2=1\), đặt \(\left\{{}\begin{matrix}x=sina\\y=cosa\end{matrix}\right.\)

\(P=\left(3-sina\right)\left(3-cosa\right)=9-3\left(sina+cosa\right)+sina.cosa\)

Đặt \(sina+cosa=t\Rightarrow t\in\left[-\sqrt{2};\sqrt{2}\right]\)

\(t^2=1+2sina.cosa\Rightarrow sina.cosa=\dfrac{t^2-1}{2}\)

\(P=9-3t+\dfrac{t^2-1}{2}=\dfrac{1}{2}t^2-3t+\dfrac{17}{2}\)

Xét hàm \(f\left(t\right)=\dfrac{1}{2}t^2-3t+\dfrac{17}{2}\) trên \(\left[-\sqrt{2};\sqrt{2}\right]\)

\(f'\left(t\right)=t-3=0\Rightarrow t=3\notin\left[-\sqrt{2};\sqrt{2}\right]\)

\(f\left(-\sqrt{2}\right)=\dfrac{19+6\sqrt{2}}{2}\) ; \(f\left(\sqrt{2}\right)=\dfrac{19-6\sqrt{2}}{2}\) 

\(\Rightarrow P_{min}=f\left(\sqrt{2}\right)=\dfrac{19-6\sqrt{2}}{2}\) khi \(t=\sqrt{2}\) 

18 tháng 4 2016

Đặt \(x+y=t,t\in\left[-2;2\right]\)

Biến đổi được \(P=-2t^3+6t\)

Xét \(f\left(t\right)=-2t^3+6t\) trên \(\left[-2;2\right]\)

Lập bảng biến thiên

Ta có \(P_{Max}=4\) khi t=1

          \(P_{Min}=-4\) khi t= -1

 

 

19 tháng 9 2019

Bài này thì chia 2 vế của giả thiết cho z2 ta thu được:

\(\frac{x}{z}+2.\frac{x}{z}.\frac{y}{z}+\frac{y}{z}=4\Leftrightarrow a+2ab+b=4\)

(đặt \(a=\frac{x}{z};b=\frac{y}{z}\)).Mà ta có: \(4=a+2ab+b\le a+b+\frac{\left(a+b\right)^2}{2}\Rightarrow a+b\ge2\) Lại có:

\(P=\frac{\left(\frac{x}{z}+\frac{y}{z}\right)^2}{\left(\frac{x}{z}+\frac{y}{z}\right)^2+\left(\frac{x}{z}+\frac{y}{z}\right)}+\frac{3}{2}.\frac{1}{\left(\frac{x}{z}+\frac{y}{z}+1\right)^2}\) (chia lần lượt cả tử và mẫu của mỗi phân thức cho z2)

\(=\frac{\left(a+b\right)^2}{\left(a+b\right)^2+\left(a+b\right)}+\frac{3}{2\left(a+b+1\right)^2}\).. Tiếp tục đặt \(t=a+b\ge2\) thu được:

\(P=\frac{t}{\left(t+1\right)}+\frac{3}{2\left(t+1\right)^2}=\frac{2t\left(t+1\right)+3}{2\left(t+1\right)^2}\)\(=\frac{2t^2+2t+3}{2\left(t+1\right)^2}-\frac{5}{6}+\frac{5}{6}\)

\(=\frac{2\left(t-2\right)^2}{12\left(t+1\right)^2}+\frac{5}{6}\ge\frac{5}{6}\)

Vậy...

P/s: check xem em có tính sai chỗ nào không:v

19 tháng 9 2019

Dấu "=" xảy ra khi nào vậy Khang ? 

AH
Akai Haruma
Giáo viên
11 tháng 8 2017

Lời giải:

Từ điều kiện đb \(\ln x+\ln y\geq \ln (x^2+y)\Leftrightarrow \ln (xy)\geq \ln (x^2+y)\)

\(\Leftrightarrow xy\geq x^2+y\Leftrightarrow y(x-1)\geq x^2\)

\(\bullet\)Nếu \(x\geq 1\Rightarrow y\geq \frac{x^2}{x-1}\)

Khi đó \(P=x+y\geq x+\frac{x^2}{x-1}=2x+1+\frac{1}{x-1}=2(x-1)+\frac{1}{x-1}+3\)

Áp dụng định lý AM-GM:

\(P\geq 2\sqrt{2(x-1).\frac{1}{x-1}}+3=2\sqrt{2}+3\) hay \(P_{\min}=2\sqrt{2}+3\)

\(\bullet \)Nếu \(x<1\Rightarrow \ln x<0\) kéo theo \(\ln x+\ln y<\ln y\)

\(\ln(x^2+y)\geq \ln (0+y)=\ln y\) nên \(\ln x+\ln y<\ln (x^2+y)\) (không thỏa mãn đkđb) (loại)

Vậy \(P_{\min}=2\sqrt{2}+3\)

Đáp án B

NV
1 tháng 7 2020

\(P=xy-3\left(x+y\right)+9\)

Đặt \(x+y=a\Rightarrow1< a\le\sqrt{2}\)

\(a^2=x^2+y^2+2xy=1+2xy\Rightarrow xy=\frac{a^2-1}{2}\)

\(P=\frac{a^2-1}{2}-3a+9\Rightarrow2P=a^2-6a+17\)

\(2P=a^2-6a-2+6\sqrt{2}+19-6\sqrt{2}\)

\(2P=\left(a+\sqrt{2}\right)\left(a-\sqrt{2}\right)-6\left(a-\sqrt{2}\right)+19-6\sqrt{2}\)

\(2P=\left(\sqrt{2}-a\right)\left(6-\sqrt{2}-a\right)+19-6\sqrt{2}\ge19-6\sqrt{2}\)

\(\Rightarrow P\ge\frac{19-6\sqrt{2}}{2}\)

Dấu "=" xảy ra khi \(a=\sqrt{2}\) hay \(x=y=\frac{\sqrt{2}}{2}\)

16 tháng 8 2016

bn ơi câu a t chưa làm chưa biết nhưng câu b chắc chắn có Max tại x=-3 nhé !   Nếu bn chỉ tìm ra Min là chưa đủ 

 

29 tháng 11 2022

Câu 1:

\(y=2\cdot\left(\dfrac{1}{2}sinx-cos\cdot\dfrac{\sqrt{3}}{2}\right)=2\cdot sin\left(x-\dfrac{pi}{3}\right)\)

=>-2<=y<=2

y=2 khi x-pi/3=pi/2+k2pi

=>x=5/6pi+k2pi

NV
15 tháng 8 2020

\(\left(x+y\right)xy=x^2+y^2-xy\)

\(\Leftrightarrow\left(x+y\right)xy=\left(x+y\right)^2-3xy\)

Đặt \(x+y=t\Rightarrow xy=\frac{t^2}{t+3}\)

Lại có \(\left(x+y\right)^2\ge4xy\Rightarrow t^2\ge\frac{4t^2}{t+3}\)

\(\Leftrightarrow t^2\left(\frac{t-1}{t+3}\right)\ge0\Rightarrow\left[{}\begin{matrix}t\ge1\\t< -3\end{matrix}\right.\)

\(A=\frac{x^3+y^3}{\left(xy\right)^3}=\frac{\left(x+y\right)\left(x^2+y^2-xy\right)}{\left(xy\right)^3}=\frac{\left(x+y\right)\left(x+y\right)xy}{\left(xy\right)^3}=\left(\frac{x+y}{xy}\right)^2\)

\(A=\left(\frac{t\left(t+3\right)}{t^2}\right)^2=\left(\frac{t+3}{t}\right)^2=\left(1+\frac{3}{t}\right)^2\)

\(\Rightarrow y'=-\frac{6\left(t+3\right)}{t^3}< 0\) \(\forall t\ge1;t< -3\)

\(\lim\limits_{x\rightarrow-\infty}\left(1+\frac{3}{t}\right)^2=1\Rightarrow A_{max}=A\left(1\right)=16\)

\(\Rightarrow M=16\) khi \(x=y=\frac{1}{2}\)