K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2018

a) ta có : \(sin^2x+cos^2x=1\Leftrightarrow\dfrac{9}{25}+cos^2x=1\Leftrightarrow cos^2x=\dfrac{16}{25}\)

\(\Rightarrow cosx=\pm\dfrac{4}{5}\)

ta có : \(tanx=\dfrac{sinx}{cosx}=\dfrac{\dfrac{3}{5}}{\pm\dfrac{4}{5}}=\pm\dfrac{3}{4}\) \(\Rightarrow cot=\dfrac{1}{tan}=\dfrac{1}{\pm\dfrac{3}{4}}=\pm\dfrac{4}{3}\)

vậy ................................................................................................

b) ta có : \(tanx=\sqrt{3}\Leftrightarrow cotx=\dfrac{1}{tanx}=\dfrac{1}{\sqrt{3}}\)

ta có : \(\dfrac{sin^2x+cos^2x}{cos^2x}=1+tan^2x\Leftrightarrow\dfrac{1}{cos^2x}=1+tan^2x\)

\(\Leftrightarrow\dfrac{1}{cos^2x}=1+\left(\sqrt{3}\right)^2=4\Rightarrow cos^2x=\dfrac{1}{4}\) \(\Leftrightarrow cos^2x=\pm\dfrac{1}{2}\)

ta có : \(sin^2x+cos^2x=1\Leftrightarrow sin^2x=1-\dfrac{1}{4}=\dfrac{3}{4}\Rightarrow sinx=\pm\dfrac{\sqrt{3}}{2}\)

vậy .............................................................................................

câu c bn làm tương tự câu a ; còn câu d bn làm tương tự câu b nha :)

18 tháng 8 2018

xin lỗi mik mới lớp 8 thui  kg jup dc j ròi

18 tháng 8 2018

giup minh giai toan voi

31 tháng 7 2015

a) sin = đối / huyền => sinx < 1 => sinx - 1 < 0

b) cos = kề / huyền => cosx < 1 => 1 - cosx > 0

c) sinx - cosx = sinx - sin(90-x)

Nếu x > 90-x hay x > 45 thì sinx - sin(90-x) > 0 hay sinx - cosx > 0

Nếu x < 90-x hay x < 45 thì sinx - sin(90-x) < 0 hay sinx - cosx < 0

d) Tương tự câu c)

 

24 tháng 7 2023

đáp án không giống lắm 

 

24 tháng 7 2023

Dạ em cảm ơn ạ

 

\(cosx=\sqrt{1-\dfrac{7}{16}}=\dfrac{3}{4}\)

\(tanx=\dfrac{\sqrt{7}}{4}:\dfrac{3}{4}=\dfrac{\sqrt{7}}{3}\)

\(cotx=1:\dfrac{\sqrt{7}}{3}=\dfrac{3}{\sqrt{7}}=\dfrac{3\sqrt{7}}{7}\)

\(M=\left(\dfrac{3}{7}\sqrt{7}+\dfrac{1}{3}\sqrt{7}\right):\left(\dfrac{3}{7}\sqrt{7}-\dfrac{1}{3}\sqrt{7}\right)\)

\(=\dfrac{16}{21}:\dfrac{2}{21}=8\)

10 tháng 8 2019

\(\tan x=\frac{\sin x}{\cos x}=\frac{3}{5}\Rightarrow\sin x=\frac{3}{5}\cos x\)

\(\Rightarrow N=\frac{\sin x.\cos x}{\sin^2x-\cos^2x}=\frac{\sin x.\cos x}{\left(\sin x-\cos x\right)\left(\sin x+\cos x\right)}\)

\(=\frac{\frac{3}{5}.\cos^2x}{\left(\frac{3}{5}\cos x-\cos x\right)\left(\frac{3}{5}\cos x+\cos x\right)}=\frac{\frac{3}{5}\cos^2x}{\frac{-16}{25}.\cos^2x}=\frac{-15}{16}\)