K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2015

cm bai toan phu 

a3+b3\(\ge ab\left(a+b\right)\)

ta co \(\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)

=>bai toan phu dung 

=>\(a^3+b^3\ge ab\left(a+b\right)\)

=>a3+b3+1\(\ge ab\left(a+b+c\right)\)

=>A\(\le\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}=\frac{z}{\left(x+y+z\right)}+\frac{x}{\left(x+y+z\right)}+\frac{y}{\left(x+y+z\right)}=1\)

MaxA=1<=>x=y=z=1

30 tháng 3 2019

3.

30 tháng 3 2019

ấn nhầm =)

11 tháng 2 2016

moi hok lop 6

11 tháng 2 2016

may dua con nit bien ra cho khac choi

12 tháng 2 2016

(2x + y)x \(\le2x\) <=> \(2x^2+xy\le2x\)(1)

Vì \(0\le x\le y\Leftrightarrow y-x\ge0\) mà \(y\le1\Rightarrow\left(y-x\right)y\le y-x\) (2)

Lấy (1) + (2) => \(2x^2+y^2\le x+y\)

áp dụng BĐT bun nhi a cốp xki :

\(\left(2x^2+y^2\right)^2\le\left(x+y\right)^2=\left(\frac{1}{\sqrt{2}}\sqrt{2}x+1\cdot y\right)^2\le\left(2x^2+y^2\right)\left(\frac{1}{2}+1\right)\)

Vì \(2x^2+y^2\ge0\) chia cả hai vế cho 2x^ 2 + y^2 ta đc ĐPCM . Dấu = xảy ra khi .... ( tự tìm )

12 tháng 2 2016

ko giai di ra cho khac

6 tháng 3 2016

pt<=>\(\left(2x-y\right)^2+\left(y-2\right)^2+\)/x+y+z/=0.

<=> \(\int^{2x-y=0}_{\int^{y-2=0}_{x+y+z=0}}\Leftrightarrow\int^{\int^{y=2}_{x=1}}_{x=-1-2=-3}\)

6 tháng 3 2016

pt<=> 

  1. 2x-y=0(1)
  2. y-2=0
  3. x+y+z=0

=> x+y+z=0(đpcm)