K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 9 2021

\(f'\left(x\right)=0\) có 2 nghiệm bội lẻ \(x=2019\) và \(x=2021\) nên hàm có 2 cực trị

7 tháng 3 2018

21 tháng 1 2019

Chọn B

31 tháng 10 2019

NV
20 tháng 3 2019

Đặt \(t=-x\Rightarrow dx=-dt\)

\(I=\int\limits^{-2}_2\frac{t^{2018}}{e^{-t}+1}\left(-dt\right)=\int\limits^2_{-2}\frac{e^t.t^{2018}}{e^t+1}dt=\int\limits^2_{-2}\frac{e^x.x^{2018}}{e^x+1}dx\)

\(\Rightarrow I+I=\int\limits^2_{-2}\frac{x^{2018}+e^x.x^{2018}}{e^x+1}dx=\int\limits^2_{-2}x^{2018}dx=\frac{2.2^{2019}}{2019}\)

\(\Rightarrow I=\frac{2^{2019}}{2019}\)

20 tháng 3 2019

Cảm ơn bạn rất nhiều !

12 tháng 2 2019

5 tháng 6 2017

13 tháng 1 2018

28 tháng 5 2018