Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là giao điểm của AC và BD
a) Vì AE//BC \(\Rightarrow\frac{OE}{OB}=\frac{OA}{OC}\)(1)
BG//AC \(\Rightarrow\frac{OB}{OD}=\frac{OG}{OA}\)(2)
Nhân vế (1) và (2) theo vế, ta có: \(\frac{OE}{OD}=\frac{OG}{OC}\Rightarrow\)EG//CD
b) Khi AB//CD thì EG//AB//CD, BG//CD nên:
\(\frac{AB}{EG}=\frac{OA}{OG}=\frac{OD}{OB}=\frac{CD}{AB}\Rightarrow\frac{AB}{EG}=\frac{CD}{AB}\Rightarrow AB^2=CD.EG\)
bn lên mạng tra hoặc vào câu hỏi tương tự nhé!
Nhớ mk!
Hok tốt!
#miu
a) Gọi O là giao điểm của AC và BD.
Ta có: AE//BC (gt)
⇒\(\frac{OE}{OA}\) \(=\frac{OB}{OC}\)(ĐL Ta-lét) (1)
Ta có: BG//AD (gt)
⇒\(\frac{OB}{OG}\)\(=\frac{OD}{OA}\) (ĐL Ta-lét) (2)
Nhân theo vế của (1) và (2), ta có:
\(\frac{OE.OB}{OA.OG}\)\(=\frac{OB.OD}{OC.OA}\)
⇒\(\frac{OE}{OG}\)\(=\frac{OD}{OC}\)
=> EG//CD
b) Khi AB//CD thì EG//AB//CD, BG//CD nên:
\(\frac{AB}{EG}\)\(=\frac{OA}{OG}\)\(=\frac{OD}{OB}\)\(=\frac{CD}{AB}\)\(\Rightarrow\frac{AB}{EG}\)\(=\frac{CD}{AB}\)\(\Rightarrow AB^2=CD.EG\)
a: Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)
\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)
Do đó: ΔOAB\(\sim\)ΔOCD
=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)
=>\(\dfrac{OC}{OA}=\dfrac{OD}{OB}\)
=>\(\dfrac{OC}{OA}+1=\dfrac{OD}{OB}+1\)
=>\(\dfrac{OC+OA}{OA}=\dfrac{OD+OB}{OB}\)
=>\(\dfrac{AC}{OA}=\dfrac{BD}{OB}\)
=>\(\dfrac{OA}{AC}=\dfrac{OB}{BD}\)(2)
b: Xét ΔCAD có OE//AD
nên \(\dfrac{DE}{DC}=\dfrac{AO}{AC}\)(1)
Xét ΔBDC có OF//BC
nên \(\dfrac{CF}{CD}=\dfrac{BO}{BD}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{DE}{DC}=\dfrac{CF}{CD}\)
=>DE=CF