K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2015

A B C D I 6 4 8 6 H

Tam giác ABI có cạnh AB < AI => góc ABI > góc AIB

Kẻ AH vuông góc với BD . Đặt BH = x;  AH = y 

+) Nếu H nằm trong đoạn BI

Áp dụng ĐL Pi ta go trong tam giác vuông AHB có: AH2 + BH= AB2 => y2 +  x2 = 36    (1)

HI = 4 - x

Áp dụng ĐL Pi ta go trong tam giác vuông AHI có: AH2 + HI2 = AI=> y2 + (4 - x)= 64 => y+ x+ 16 - 8x = 64    (2)

Từ (1)(2) => 36 + 16 - 8x = 64 => 8x = -12 => Loại 

=> H nằm ngoài đoạn BI về phía B

A B C D I 6 4 8 6 H

HI = x + 4 

Áp dụng ĐL Pi ta go trong tam giác vuông AHI có: AH2 + HI= AI=> y+ (x+ 4)= 64 => y2 + x+ 8x + 16 = 64 (3)

Từ (1)(3) => 36 + 16 + 8x = 64 => 8x = 12 => x = 1,5

=> y= 33,75 

HD = x + 4 + 6 = 11,5 

Áp dụng ĐL Pita go trong tam giác vuông AHD có: AD = y+ HD=> AD2 = 33,75 + 11,5= 166 => AD = \(\sqrt{166}\approx12,88\) (cm) 

3: Xét ΔIOD và ΔIBC có

góc ICB=góc IDO

góc OID=góc BIC

=>ΔIOD đồng dạng với ΔIBC

=>IO/IB=ID/IC

=>IO*IC=IB*ID

30 tháng 5 2023

IO*IC=IB*IF

a) Xét (O) có

ΔADB nội tiếp đường tròn(A,D,B∈(O))

AB là đường kính

Do đó: ΔADB vuông tại D(Định lí)

\(\widehat{ADB}=90^0\)

hay \(\widehat{ADE}=90^0\)

Xét tứ giác ADEH có 

\(\widehat{ADE}\) và \(\widehat{AHE}\) là hai góc đối

\(\widehat{ADE}+\widehat{AHE}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ADEH là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

bài này em ko bt em mới học lp 6 thôi

29 tháng 4 2016

Xét các tam giác đồng dạng là dc

Áp dụng hệ thức lượng trong tam giác vuông vào ΔADC vuông tại D có DE là đường cao ứng với cạnh huyền AC, ta được:

\(\dfrac{1}{DE^2}=\dfrac{1}{AD^2}+\dfrac{1}{DC^2}\)
\(\Leftrightarrow\dfrac{1}{DE^2}=\dfrac{1}{6^2}+\dfrac{1}{32^2}=\dfrac{265}{9216}\)

hay \(DE=\dfrac{96\sqrt{265}}{265}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔDEA vuông tại E, ta được:

\(DE^2+EA^2=DA^2\)

\(\Leftrightarrow EA^2=32^2-\left(\dfrac{96\sqrt{265}}{265}\right)^2=\dfrac{262144}{265}\)

hay \(EA=\dfrac{512\sqrt{265}}{265}\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔDAC vuông tại D có DE là đường cao ứng với cạnh huyền AC, ta được:

\(ED^2=EA\cdot EC\)

\(\Leftrightarrow EC=\dfrac{9216}{265}\cdot\dfrac{265}{512\sqrt{265}}\)

hay \(EC=\dfrac{18\sqrt{265}}{265}\left(cm\right)\)

a) Chúng ta sẽ dùng cách chứng minh phản chứng

Để ABCD là tứ giác nội tiếp thì OA=OB=OC=OD(O là tâm của đường tròn ngoại tiếp tứ giác nội tiếp ABCD vì O là giao điểm của hai đường chéo)

hay \(OA\cdot OC=OB\cdot OD\)(đpcm)

 

28 tháng 2 2021

Nếu $OA\neq OB \neq OC \neq OD$ thì sao ạ? Với hình như "O là giao điểm của hai đường chéo thì là tâm đường tròn" chỉ đúng khi ABCD là hình thang cân.

19 tháng 6 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Xét tam giác vuông EFD có:

FM là đường trung tuyến ứng với cạnh huyền CD

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 là góc ngoài tại đỉnh M của tam giác FMD nên:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Xét tứ giác BCMF có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 và Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 và cùng nhìn cạnh BF dưới một góc bằng nhau

Suy ra, tứ giác BCMF nội tiếp được.