Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABI có cạnh AB < AI => góc ABI > góc AIB
Kẻ AH vuông góc với BD . Đặt BH = x; AH = y
+) Nếu H nằm trong đoạn BI
Áp dụng ĐL Pi ta go trong tam giác vuông AHB có: AH2 + BH2 = AB2 => y2 + x2 = 36 (1)
HI = 4 - x
Áp dụng ĐL Pi ta go trong tam giác vuông AHI có: AH2 + HI2 = AI2 => y2 + (4 - x)2 = 64 => y2 + x2 + 16 - 8x = 64 (2)
Từ (1)(2) => 36 + 16 - 8x = 64 => 8x = -12 => Loại
=> H nằm ngoài đoạn BI về phía B
HI = x + 4
Áp dụng ĐL Pi ta go trong tam giác vuông AHI có: AH2 + HI2 = AI2 => y2 + (x+ 4)2 = 64 => y2 + x2 + 8x + 16 = 64 (3)
Từ (1)(3) => 36 + 16 + 8x = 64 => 8x = 12 => x = 1,5
=> y2 = 33,75
HD = x + 4 + 6 = 11,5
Áp dụng ĐL Pita go trong tam giác vuông AHD có: AD2 = y2 + HD2 => AD2 = 33,75 + 11,52 = 166 => AD = \(\sqrt{166}\approx12,88\) (cm)
3: Xét ΔIOD và ΔIBC có
góc ICB=góc IDO
góc OID=góc BIC
=>ΔIOD đồng dạng với ΔIBC
=>IO/IB=ID/IC
=>IO*IC=IB*ID
a) Xét (O) có
ΔADB nội tiếp đường tròn(A,D,B∈(O))
AB là đường kính
Do đó: ΔADB vuông tại D(Định lí)
⇒\(\widehat{ADB}=90^0\)
hay \(\widehat{ADE}=90^0\)
Xét tứ giác ADEH có
\(\widehat{ADE}\) và \(\widehat{AHE}\) là hai góc đối
\(\widehat{ADE}+\widehat{AHE}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ADEH là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔADC vuông tại D có DE là đường cao ứng với cạnh huyền AC, ta được:
\(\dfrac{1}{DE^2}=\dfrac{1}{AD^2}+\dfrac{1}{DC^2}\)
\(\Leftrightarrow\dfrac{1}{DE^2}=\dfrac{1}{6^2}+\dfrac{1}{32^2}=\dfrac{265}{9216}\)
hay \(DE=\dfrac{96\sqrt{265}}{265}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔDEA vuông tại E, ta được:
\(DE^2+EA^2=DA^2\)
\(\Leftrightarrow EA^2=32^2-\left(\dfrac{96\sqrt{265}}{265}\right)^2=\dfrac{262144}{265}\)
hay \(EA=\dfrac{512\sqrt{265}}{265}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔDAC vuông tại D có DE là đường cao ứng với cạnh huyền AC, ta được:
\(ED^2=EA\cdot EC\)
\(\Leftrightarrow EC=\dfrac{9216}{265}\cdot\dfrac{265}{512\sqrt{265}}\)
hay \(EC=\dfrac{18\sqrt{265}}{265}\left(cm\right)\)
a) Chúng ta sẽ dùng cách chứng minh phản chứng
Để ABCD là tứ giác nội tiếp thì OA=OB=OC=OD(O là tâm của đường tròn ngoại tiếp tứ giác nội tiếp ABCD vì O là giao điểm của hai đường chéo)
hay \(OA\cdot OC=OB\cdot OD\)(đpcm)
Xét tam giác vuông EFD có:
FM là đường trung tuyến ứng với cạnh huyền CD
Ta có:
là góc ngoài tại đỉnh M của tam giác FMD nên:
Xét tứ giác BCMF có:
và và cùng nhìn cạnh BF dưới một góc bằng nhau
Suy ra, tứ giác BCMF nội tiếp được.