K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD có 

M là trung điểm của AB

K là trung điểm của AD

Do đó: MK là đường trung bình của ΔBAD

Suy ra: MK//BD và \(MK=\dfrac{BD}{2}\left(1\right)\)

Xét ΔCBD có 

N là trung điểm của BC

I là trung điểm của CD

Do đó: NI là đường trung bình của ΔCBD

Suy ra: NI//BD và \(NI=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra MK//NI và MK=NI

hay MKIN là hình bình hành

11 tháng 9 2017

hơi khó đấy . bởi mik mới học lớp 6

12 tháng 9 2017

1/ Vẽ hình ...

2/Bài làm như sau:

Bạn cần thêm điều kiện AB = AD .

Gọi K là trung điểm của AD. Dễ dàng chứng minh được MNPQ là hình vuông 

Suy ra : SMNPQ=NQ22SMNPQ=NQ22

Mặt khác, ta luôn có : KQ+QN≥KNKQ+QN≥KN ⇒QN≥|KN−KQ|=12|c−a|⇒QN≥|KN−KQ|=12|c−a|

⇒QN2≥(c−a)24⇒SMNPQ=QN22≥(c−a)28⇒QN2≥(c−a)24⇒SMNPQ=QN22≥(c−a)28

Dấu "=" xảy ra khi M , Q, N thẳng hàng => AB // CD

6 tháng 10 2018

Sử dụng đường trung bình, ta có: KN = 1/2 AB, NI = 1/2 CD , IM = 1/2 AB , MK = 1/2 CD

Mà AB = CD (gt)

\(\Rightarrow KN=NI=IM=MK\)

\(\Rightarrow KNIM\)là hình thoi

Do đó: MN là tia phân giác của \(\widehat{IMK}\)(tính chất hình thoi)

Chúc bạn học tốt.