Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: AB → = (−4; 5; −1) và AC → = (0; −1; 1) suy ra n → = AB → ∧ n → = (4; 4; 4)
Do đó (ABC) có vecto pháp tuyến là n → = (4; 4; 4) hoặc n ' → = (1; 1; 1)
Suy ra phương trình của (ABC) là: (x – 5) + (y – 1) + (z – 3) = 0 hay x + y + z – 9 =0
Mặt phẳng ( α ) đi qua điểm D và song song với mặt phẳng (ABC) nên ( α ) cũng có vecto pháp tuyến là n ' → = (1; 1; 1)
Vậy phương trình của ( α ) là: (x – 4) + (y) + (z – 6) = 0 hay x + y + z – 10 = 0.
Gọi (P) là mặt phẳng đi qua cạnh AB và song song với cạnh CD. Mặt phẳng (P) có vecto pháp tuyến n → vuông góc với hai vecto A B → = - 4 ; 5 ; - 1 v à C D → - 1 ; 0 ; 2
Giải:
a) Mặt phẳng (ACD) đi qua A(5 ; 1 ; 3) và chứa giá của các vectơ (0 ; -1 ; 1)
và (-1 ; -1 ; 3).
Vectơ = (-2 ; -1 ; -1) vuông góc với mặt phẳng (ACD).
Phương trình (ACD) có dạng:
2(x - 5) + (y - 1) + (z - 3) = 0.
hay 2x + y + z - 14 = 0.
Tương tự: Mặt phẳng (BCD) qua điểm B(1 ; 6 ; 2) và nhận vectơ làm vectơ pháp tuyến.
Ta có :(4 ; -6 ; 2), (3 ; -6 ; 4) và
= (-12 ; -10 ; -6)
Xét (6 ; 5 ; 3) thì nên cũng là vectơ pháp tuyến của mặt phẳng (BCD). Phương trình mặt phẳng (BCD) có dạng:
6(x - 1) + 5(y - 6) +3(z - 2) = 0
hay 6x + 5y + 3z - 42 = 0.
b) Mặt phẳng ( α ) qua cạnh AB và song song với CD thì ( α ) qua A và nhận
(-4 ; 5 ; 1) , (-1 ; 0 ; 2) làm vectơ chỉ phương.
Vectơ = (10 ; 9 ; 5) là vectơ pháp tuyến của ( α ).
Phương trình mặt phẳng ( α ) có dạng : 10x + 9y + 5z - 74 = 0.
(BCD) nhận là 1 vtpt
⇒ (BCD): 16x – 6y – 4z + 8 = 0
hay (BCD): 8x – 3y – 2z + 4 = 0.
Vecto pháp tuyến của mặt phẳng (ACD) vuông góc với hai vecto A C → = 0 ; - 1 ; 1 v à A D → = - 1 ; - 1 ; 3