K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2021

Định chụp hình cơ cơ mà khá khó nhìn nên thoi đánh máy, bạn cố hiểu nhé

Từ H kẻ đường thẳng song song với ME cắt BC ở K

Từ K kẻ đường thẳng song song với EN cắt CD ở I

Nối I với H ta được mp (P) cần tìm

\(\left\{{}\begin{matrix}K\in HK\subset\left(HKI\right);K\in BC\subset\left(BCD\right)\\I\in KI\subset\left(HKI\right);I\in CD\subset\left(BCD\right)\end{matrix}\right.\Rightarrow\left(HKI\right)\cap\left(BCD\right)=KI\Rightarrow\left(P\right)\cap\left(BCD\right)=KI\)

Ta co \(\left\{{}\begin{matrix}H\in HK\subset\left(HKI\right);H\in AB\subset\left(ABD\right)\\KI//AB\end{matrix}\right.\)

=> Giao tuyen cua (P) va (ABD) la duong thang ua H va song song voi BD

9 tháng 11 2017

Đáp án C

Xét (MNE) và (BCD) có:

E là điểm chung

BC // MNBC // (MNE)

⇒ Giao tuyến của 2 mặt phẳng là đường thẳng d đi qua E và song song BC

d cắt BD tại H

⇒ MNEH là thiết diện cần tìm

Xét tứ giác MNEH có MN // EH ( // BC)

⇒ MNEH là hình thang

7 tháng 10 2019

Giải bài tập Đại số 11 | Để học tốt Toán 11

a) + (α) // AC

⇒ Giao tuyến của (α) và (ABC) là đường thẳng song song với AC.

Mà M ∈ (ABC) ∩ (α).

⇒ (ABC) ∩ (α) = MN là đường thẳng qua M, song song với AC (N ∈ BC).

+ Tương tự (α) ∩ (ABD) = MQ là đường thẳng qua M song song với BD (Q ∈ AD).

+ (α) ∩ (BCD) = NP là đường thẳng qua N song song với BD (P ∈ CD).

+ (α) ∩ (ACD) = QP.

b)Ta có:

Giải bài tập Đại số 11 | Để học tốt Toán 11

Suy ra, tứ giác MNPQ có các cạnh đối song song với nhau nên tứ giác MNPQ là hình bình hành.

15 tháng 6 2019

Đáp án B

Trong (ABC) kẻ MN // AC ( N ∈ BC)

Trong (ABD) kẻ MP // AD ( P ∈ BD)

⇒ (MNP)  là mặt phẳng cần tìm

Xét tam giác MNP có MN = MP =NP (= a - m )

⇒ tam giác MNP đều

Mà NP // CD và BG là trung tuyến tam giác BCD

⇒ BG cắt NP tại H là trung điểm NP

MH  là đường cao tam giác MNP

Ta có: PH = a - m 2 và MP = a – m. Áp dụng định lý pitago, ta có: MH = 3 2 a - m

Và NP = a – m

SMNP = MH . NP 2 = 3 4 a - m 2

4 tháng 1 2019

Đáp án B

Trong (ABC), kẻ đường thẳng d đi qua M song song CI

d cắt AC tại H

Trong (SAB) kẻ đường thẳng x đi qua M và song song SI

X cắt SA tại J

⇒ (MHJ) là thiết diện cần tìm

Gọi tứ diện đều cạnh 2a ⇒ AI = a

Ta có AM = x và M J S I = A M A I  (MJ // SI theo cách dựng)

  A M A I = M H C I (MH // CI theo cách dựng)

J H S C = A H A C = A M A I

⇒ MJ = x a . 3 a   x 3

       MH = x a . 3 a  =  x 3

       JH = x a . 2 a = 2x

Chu vi thiết diện MHJ là: x 3 + x 3 + 2x = 2x ( 3  + 1 )

8 tháng 4 2019

Đáp án A