K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

#\(N\)

`a,` Xét Tam giác `OMP` và Tam giác `ONP` có:

`OM = ON (g``t)`

\(\widehat{MOP}=\widehat{NOP}\) `(` tia phân giác \(\widehat{xOy}\) `)`

`OP` chung

`=>` Tam giác `OMP =` Tam giác `ONP (c-g-c)`

`b,` Vì Tam giác `OMP =` Tam giác `ONP (a)`

`=> MP = NP (` 2 cạnh tương ứng `)`

`=>`\(\widehat{MPH}=\widehat{NPH}\) `(` 2 góc tương ứng `)`

Xét Tam giác `MPH` và Tam giác `NPH` có:

`MP = NP (CMT)`

\(\widehat{MPH}=\widehat{NPH}(CMT)\)

`PH` chung

`=>` Tam giác `MPH = `Tam giác `NPH (c-g-c)`

`=>`\(\widehat{MHP}=\widehat{NHP}\) `(` 2 góc tương ứng `)`

Mà `2` góc này ở vị trí kề bù

`=>`\(\widehat{MHP}+\widehat{NHP}=180^0\)

`=>` \(\widehat{MHP}=\widehat{NHP}=\)\(\dfrac{180}{2}=90^0\)

`=>`\(MN\perp OP\left(đpcm\right)\)

loading...

a: Xét ΔMOP và ΔNOP có 

OM=ON

\(\widehat{MOP}=\widehat{NOP}\)

OP chung

Do đó: ΔMOP=ΔNOP

b: Ta có: ΔMOP=ΔNOP

Suy ra: PM=PN

hay P là trung điểm của MN

c: Ta có: OM=ON

nên O nằm trên đường trung trực của MN(1)

Ta có: P là trung điểm của MN

nên P nằm trên đường trung trực của MN(2)

từ (1) và (2) suy ra OP là đường trung trực của MN

hay OP\(\perp\)MN

a) ta có \(OP+PQ=OQ\)

\(OM+MN=ON\)

mà \(OP=OM;PQ=MN\)

\(\Rightarrow OQ=ON\)

Xét \(\Delta NOPvà\Delta QOMcó\)

\(OP=OM\) ( giả thiết )

\(\widehat{QON}\) là góc chung

\(OQ=ON\) (chứng minh trên)

\(\Rightarrow\Delta NOP=\Delta QOM\left(c-g-c\right)\)

vậy \(\Delta NOP=\Delta QOM\)

b) tự làm nhé

 

26 tháng 10 2019

x O y A B z t m n C p q

a)TA CÓ \(\widehat{OBn}+\widehat{BOA}=90^o+90^o=180^o\)

HAI GÓC \(\widehat{OBn}\)\(\widehat{BOA}\)Ở VỊ TRÍ TRONG CÙNG PHÍA BÙ NHAU

\(\Rightarrow mn//Ox\)

b) VÌ \(mn//Ox\)

\(\Rightarrow\widehat{BCA}=\widehat{CAx}=90^O\)

\(\Rightarrow\widehat{BCA}=90^O\)

C) TÍNH TIA PHÂN QIACS RỒI CM NHA

26 tháng 10 2019

GIẢI LUÔN

x o y z t m n p q B A C 1 1

C) Vì TIA OP LÀ TIA PHÂN GIÁC CỦA \(\widehat{xOy}\)

\(\Rightarrow\widehat{yOp}=\widehat{pOx}=\widehat{\frac{xOy}{2}}=\frac{90^o}{2}=45^o\)

Vì TIA Oq LÀ TIA PHÂN GIÁC CỦA \(\widehat{BCA}\)

\(\Rightarrow\widehat{BCq}=\widehat{qCA}=\frac{\widehat{BCA}}{2}=\frac{90^o}{2}=45^0\)

XÉT \(\Delta ZAQ\)

CÓ \(\widehat{Q_1}+\widehat{A}+\widehat{C_1}=180^o\)

THÂY\(\widehat{Q_1}+90^o+45^o=180^o\)

\(\Rightarrow\widehat{Q_1}=45^o\)

\(\Rightarrow\widehat{Q_1}=\widehat{POX}=45^o\)

HAI GÓC\(\widehat{Q_1}\)VÀ \(\widehat{POX}\)Ở VỊ TRÍ ĐỒNG VỊ BẰNG NHAU

\(\Rightarrow Oq//Op\)

DD
12 tháng 5 2022

a) Xét tam giác \(OIA\) và tam giác \(OIB\) có: 

\(OA=OB\)

\(\widehat{AOI}=\widehat{BOI}\)

\(OI\) cạnh chung

suy ra \(\Delta OIA=\Delta OIB\) (c.g.c) 

b) Xét tam giác \(OIN\) và tam giác \(OIM\):

\(\widehat{ION}=\widehat{IOM}\)

\(OI\) cạnh chung

\(\widehat{ONI}=\widehat{OMI}\left(=90^o\right)\)

suy ra \(\Delta OIN=\Delta OIM\) (cạnh huyền - góc nhọn)

\(\Rightarrow IN=IM\)

c) \(\Delta OIA=\Delta OIB\) suy ra \(IA=IB\).

Xét tam giác \(INA\) và tam giác \(IMB\):

\(IA=IB\)

\(\widehat{INA}=\widehat{IMB}\left(=90^o\right)\)

\(IN=IM\)

suy ra \(\Delta INA=\Delta IMB\) (cạnh huyền - cạnh góc vuông)

\(\Rightarrow\widehat{AIN}=\widehat{BIM}\)

d) \(\Delta OIN=\Delta OIM\) suy ra \(ON=OM\)

suy ra \(\dfrac{ON}{OA}=\dfrac{OM}{OB}\) suy ra \(MN//AB\).

 

21 tháng 4 2022

bn cần cả bài hay lm phần nào ạ

21 tháng 4 2022

cả bài ạ

 

a: Xét ΔOIA và ΔOIB có

OA=OB

\(\widehat{AOI}=\widehat{BOI}\)

OI chung

Do đó: ΔOIA=ΔOIB

b: Xét ΔONI vuông tại N và ΔOMI vuông tại M có

OI chung

\(\widehat{NOI}=\widehat{MOI}\)

Do đó: ΔONI=ΔOMI

Suy ra: IN=IM

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:a) Góc OAB = góc OCAb) Tam giác AOM = tam giác CONc) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MONBài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C...
Đọc tiếp

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:
a) Góc OAB = góc OCA
b) Tam giác AOM = tam giác CON
c) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MON
Bài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C nằm giữa O, D) sao cho OA=OC và OB=OD. Chứng minh:
a) Tam giác AOD = tam giác COB
b) Tam giác ABD = tam giác CDB
c) Gọi I là giao điểm của AD và BC. Chứng minh IA=IC; IB=ID
Bài 3: Cho tam giác ABC. Qua A kẻ đường thẳng song song với BC, qua C kẻ đường thẳng song song với AB, hai đường thẳng này cắt nhau tại D
a) Chứng minh: AD=BC và AB=DC
b) Gọi M, N lần lượt là trung điểm của BC và AD. Chứng minh: AM=CN
c) Gọi O là giao điểm của AC và BD. Chứng minh: OA=OC và OB=OD
d) Chứng minh: M, O, N thẳng hàng
Bài 4: Cho góc xOy = 60 độ. Vẽ Oz là tia phân giác của góc xOy 
a) Tính góc xOy?
b) Trên Ox lấy điểm A và trên Oy lấy điểm B sao cho OA=OB. Tia Oz cắt AB tại I. Chứng minh tam giác OIA = tam giác OIB
c) Chứng minh OI vuông góc AB
d) Trên tia Oz lấy điểm M. Chứng minh MA=MB
e) Qua M vẽ đường thẳng song song với AB cắt tia Ox, Oy lần lượt tại C và D. Chứng minh BD=AC

       Mọi ng giúp mình giải bài này nhé! Cảm ơn mn <3

7
31 tháng 5 2018

Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá

31 tháng 5 2018

3/ (Bạn tự vẽ hình giùm)

a/ \(\Delta ABC\)và \(\Delta ADC\)có:

\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)

Cạnh AC chung

\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)

=> \(\Delta ABC\)\(\Delta ADC\)(g. c. g)

=> AD = BC (hai cạnh tương ứng)

và AB = DC (hai cạnh tương ứng)

b/ Ta có AD = BC (cm câu a)

và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)

và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)

=> AN = MC

Chứng minh tương tự, ta cũng có: BM = ND

\(\Delta AMB\)và \(\Delta CND\)có:

BM = ND (cmt)

\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)

AB = CD (\(\Delta ABC\)\(\Delta ADC\))

=> \(\Delta AMB\)\(\Delta CND\)(c. g. c)

=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)

và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)\(\Delta ADC\))

=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)

=> \(\widehat{MAC}=\widehat{ACN}\)(1)

Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)

và AN = MC (cmt) (3)

=> \(\Delta MAC=\Delta NAC\)(g, c. g)

=> AM = CN (hai cạnh tương ứng) (đpcm)

c/ \(\Delta AOB\)và \(\Delta COD\)có:

\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)

AB = CD (cm câu a)

\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)

=> \(\Delta AOB\)\(\Delta COD\)(g. c. g)

=> OA = OC (hai cạnh tương ứng)

và OB = OD (hai cạnh tương ứng)

d/ \(\Delta ONA\)và \(\Delta MOC\)có:

\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)

OA = OC (O là trung điểm AC)

\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)

=> \(\Delta ONA\)\(\Delta MOC\)(g. c. g)

=> ON = OM (hai cạnh tương ứng)

=> O là trung điểm MN

=> M, O, N thẳng hàng (đpcm)