Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(y'=a\)\(cosx-b\)\(sinx+1\)
y đồng biến trên R \(\Leftrightarrow y'\ge0,\forall x\in R\)
\(\Leftrightarrow acosx-bsinx+1\ge0,\forall x\in R\)(*)
Theo bất đẳng thức Schwartz thì:
\(|acosx-bsinx|\le\sqrt{a^2+b^2},\forall x\)
\(\Leftrightarrow-\sqrt{a^2+b^2}\le acos-bsinx\le\sqrt{a^2+b^2},\forall x\)
\(\Leftrightarrow1-\sqrt{a^2+b^2}\le acos-bsinx+1\le1+\sqrt{a^2+b^2},\forall x\)
Do đó (*) \(\Leftrightarrow1-\sqrt{a^2+b^2}\ge0\)
\(\Leftrightarrow\sqrt{a^2+b^2}\le1\)
\(\Leftrightarrow a^2+b^2\le1\)
Lời giải:
a) Thay $a+b=-c$ ta có:
\(a^5+b^5+c^5=(a^2+b^2+c^2)(a^3+b^3+c^3)-a^2b^2(a+b)-b^2c^2(b+c)-c^2a^2(c+a)\)
\(=(a^2+b^2+c^2)[(a+b)^3-3ab(a+b)+c^3]+a^2b^2c+b^2c^2a+c^2a^2b\)
\(=(a^2+b^2+c^2)(-c^3+3abc+c^3]+abc(ab+bc+ac)\)
\(=abc(3a^2+3b^2+3c^2+ab+bc+ac)\)
\(=abc.\left(\frac{5}{2}(a^2+b^2+c^2)+\frac{a^2+b^2+c^2+2ab+2bc+2ac}{2}\right)\)
\(=abc[\frac{5}{2}(a^2+b^2+c^2)+\frac{(a+b+c)^2}{2}]=\frac{5abc(a^2+b^2+c^2)}{2}\) (đpcm)
b) Áp dụng kết quả $a^3+b^3+c^3=3abc$ đã làm ở phần a và điều kiện đề bài $a+b+c=0$ ta có:
\(a^7+b^7+c^7=(a^4+b^4+c^4)(a^3+b^3+c^3)-a^3b^3(a+b)-b^3c^3(b+c)-c^3a^3(c+a)\)
\(=3abc(a^4+b^4+c^4)+a^3b^3c+b^3c^3a+c^3a^3b\)
\(=abc(3a^4+3b^4+3c^4+a^2b^2+b^2c^2+c^2a^2)(1)\)
Mà:
\(a^4+b^4+c^4=(a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+c^2a^2)\)
\(=[(a+b+c)^2-2(ab+bc+ac)]^2-2(a^2b^2+b^2c^2+c^2a^2)\)
\(=4(ab+bc+ac)^2-2a^2b^2-2b^2c^2-2c^2a^2=2(a^2b^2+b^2c^2+c^2a^2)+8abc(a+b+c)\)
\(=2(a^2b^2+b^2c^2+c^2a^2)\)
\(\Rightarrow \frac{a^4+b^4+c^4}{2}=a^2b^2+b^2c^2+c^2a^2(2)\)
Từ $(1);(2)\Rightarrow a^7+b^7+c^7=abc(3a^4+3b^4+3c^4+\frac{a^4+b^4+c^4}{2})=\frac{7abc(a^4+b^4+c^4)}{2}$ (đpcm)
a)Ta có: ab+ac+bc=-7 (ab+ac+bc)^2=49
nên
(ab)^2+(bc)^2+(ac)^2=49
nên a^4+b^4+c^4=(a^2+b^2+c^2)^2−2(ab)^2−2(ac)^2−2(bc^)2=98
b) (x^2+y^2+z^2)/(a^2+b^2+c^2)=
=x^2/a^2+y^2/b^2+z^2/c^2 <=>
x^2+y^2+z^2=x^2+(a^2/b^2)y^2+
+(a^2/c^2)z^2+(b^2/a^2)x^2+y^2+
+(b^2/c^2)z^2+(c^2/a^2)x^2+
+(c^2/b^2)y^2+z^2 <=>
[(b^2+c^2)/a^2]x^2+[(a^2+c^2)/b^2]y^2+
+[(a^2+b^2)/c^2]z^2 = 0 (*)
Đặt A=[(b^2+c^2)/a^2]x^2; B=[(a^2+c^2)/b^2]y^2;
và C=[(a^2+b^2)/c^2]z^2
Vì a,b,c khác 0 nên suy ra A,B,C đều không âm
Từ (*) ta có A+B+C=0
Tổng 3 số không âm bằng 0 thì cả 3 số đều phải bằng 0,tức A=B=C=0
Vì a,b,c khác 0 nên [(b^2+c^2)/c^2]>0 =>x^2=0 =>x=0
Tương tự B=C=0 =>y^2=z^2=0 => y=z=0
Vậy x^2011+y^2011+z^2011=0
Và x^2008+y^2008+z^2008=0.