K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 4 2019

\(\frac{sin^2a+1}{2.cos^2a}+\frac{1+cos^2a}{2.sin^2a}+1=\frac{tan^2a}{2}+\frac{1}{2cos^2a}+\frac{cot^2a}{2}+\frac{1}{2sin^2a}+1\)

\(=\frac{1}{2}\left(tan^2a+1+tan^2a+cot^2a+1+cot^2a+2\right)\)

\(=\frac{1}{2}\left(2tan^2a+4+2cot^2a\right)=tan^2a+2+cot^2a=\left(tana+cota\right)^2\)

B.

\(\frac{1-4sin^2a.cos^2a}{4sin^2a.cos^2a}=\frac{\frac{1}{cos^4a}-\frac{4sin^2a}{cos^2a}}{\frac{4sin^2a}{cos^2a}}=\frac{\left(\frac{1}{cos^2a}\right)^2-4tan^2a}{4tan^2a}=\frac{\left(1+tan^2a\right)^2-4tan^2a}{4tan^2a}\)

\(=\frac{tan^4a-2tan^2a+1}{4tan^2a}\)

C.

\(\frac{sina+tana}{tana}=\frac{sina}{tana}+1=1+sina.\frac{cosa}{sina}=1+cosa\)

D.

\(tana+\frac{cosa}{1+sina}=\frac{sina}{cosa}+\frac{cosa\left(1-sina\right)}{1-sin^2a}=\frac{sina.cosa}{cos^2a}+\frac{cosa-cosa.sina}{cos^2a}\)

\(=\frac{sina.cosa+cosa-sina.cosa}{cos^2a}=\frac{cosa}{cos^2a}=\frac{1}{cosa}\)

Câu C sai

4 tháng 5 2020

cos đó bạn

AH
Akai Haruma
Giáo viên
4 tháng 5 2020

Lời giải:

a)

\(\cos 2a=\frac{2}{5}\Rightarrow \sin ^22a=1-(\cos 2a)^2=1-(\frac{2}{5})^2=\frac{21}{25}\)

Vì $a\in (0; \frac{\pi}{4})\Rightarrow 2a\in (0; \frac{\pi}{2})$

$\Rightarrow \sin 2a>0\Rightarrow \sin 2a=\frac{\sqrt{21}}{5}$

$\tan 2a=\frac{\sin 2a}{\cos 2a}=\frac{\sqrt{21}}{5.\frac{2}{5}}=\frac{\sqrt{21}}{2}$

$\cot 2a=\frac{1}{\tan 2a}=\frac{2}{\sqrt{21}}$

-------------------------

$\sin 2a=\frac{24}{25}\Rightarrow \cos ^22a=1-(\sin 2a)^2=\frac{49}{625}$

$a\in [\frac{-3}{4}\pi; \frac{-\pi}{2}]\Rightarrow 2a\in [\frac{-3}{2}\pi ; -\pi]\Rightarrow \cos 2a< 0$

$\Rightarrow \cos 2a=\frac{-7}{25}$

$\Rightarrow \tan 2a=\frac{\sin 2a}{\cos 2a}=\frac{24}{25.\frac{-7}{25}}=\frac{-24}{7}$

$\Rightarrow \cot 2a=\frac{-7}{24}$

NV
27 tháng 4 2020

Bài 1:

\(A=\left(1+sinx\right)\left(1-sinx\right)tan^2x=\left(1-sin^2x\right).\frac{sin^2x}{cos^2x}=cos^2x.\frac{sin^2x}{cos^2x}=cos^2x\)

\(B=cot^2x-sin^2x.cot^2x+1-cot^2x=1-sin^2x.\frac{cos^2x}{sin^2x}=1-cos^2x=sin^2x\)

\(C=tan^2x+2+\frac{1}{tan^2x}-\left(tan^2x-2+\frac{1}{tan^2x}\right)=2+2=4\)

Bài 2:

Đề yêu cầu tính giá trị lượng giác nào bạn? sin?cos?tan?cot?

Không hỏi thì làm sao mà biết cần tính gì

27 tháng 4 2020

tính giá trị lượng giác còn lại của góc \(\alpha\)

NV
21 tháng 5 2020

\(A=\frac{\frac{sina}{cos^3a}-\frac{cosa}{cos^3a}}{tan^3a+3+\frac{2sina}{cos^3a}}=\frac{tana.\frac{1}{cos^2a}-\frac{1}{cos^2a}}{tan^3a+3+2tana.\frac{1}{cos^2a}}\)

\(=\frac{tana\left(1+tan^2a\right)-\left(1+tan^2a\right)}{tan^3a+3+2tana\left(1+tan^2a\right)}=\frac{3\left(1+9\right)-\left(1+9\right)}{27+3+2.3.\left(1+9\right)}=...\)

17 tháng 5 2020

\(A=\frac{tana+tanb}{tan\left(a+b\right)}-\frac{tana-tanb}{tan\left(a-b\right)}=\frac{tana+tanb}{\frac{tana+tanb}{1-tana\cdot tanb}}-\frac{tana-tanb}{\frac{tana-tanb}{1+tana\cdot tanb}}\\ \Leftrightarrow A=1-tana\cdot tanb-1-tana\cdot tanb=-2tana\cdot tanb\)

\(B=\frac{cos^3x-cos3x}{cosx}+\frac{sin^3x+sin3x}{sinx}\\ B=\frac{cos^3x-4cos^3x+3cosx}{cosx}+\frac{sin^3x+3sinx-4sin^3x}{sinx}\\ B=\frac{-3cos^3x+3cosx}{cosx}+\frac{-3sin^3x+3sinx}{sinx}\\ B=\frac{cosx\left(-3cos^2x+3\right)}{cosx}+\frac{sinx\left(-3sin^2x+3\right)}{sinx}\\ B=-3cos^2x+3-3sin^2x+3=6-3\left(sin^2x+cos^2x\right)=6-3=3\)

~~~~~~~~chúc bạn học tốt~~~~~~~~~~

Bài 1) Đơn giản các biểu thức sau (giả sử các biểu thức đều có nghĩa) :B= \(\sqrt{2}-\frac{1}{sin\left(x+2013\pi\right)}\cdot\sqrt{\frac{1}{1+cosx}+\frac{1}{1-cosx}}\) với \(\pi x 2\pi\) Bài 2) Tính các giá trị lượng giác còn lại của góc \(\alpha\) biết: a) \(\sin\alpha=\frac{1}{3}\)và 90 < \(\alpha\) < 180 b) \(\cos\alpha=\frac{-2}{3}\left(\pi \text{​​}\alpha \frac{3\pi}{2}\right)\) Bài 3) a) Tính các giá trị lượng giác còn lại của góc...
Đọc tiếp

Bài 1) Đơn giản các biểu thức sau (giả sử các biểu thức đều có nghĩa) :B= \(\sqrt{2}-\frac{1}{sin\left(x+2013\pi\right)}\cdot\sqrt{\frac{1}{1+cosx}+\frac{1}{1-cosx}}\) với \(\pi< x< 2\pi\)

Bài 2) Tính các giá trị lượng giác còn lại của góc \(\alpha\) biết:
a) \(\sin\alpha=\frac{1}{3}\)và 90 < \(\alpha\) < 180

b) \(\cos\alpha=\frac{-2}{3}\left(\pi< \text{​​}\alpha< \frac{3\pi}{2}\right)\)

Bài 3) a) Tính các giá trị lượng giác còn lại của góc \(\alpha\), biết sin\(\alpha\) =\(\frac{1}{5}\) và tan\(\alpha\)+cot\(\alpha\) < 0
b) Cho \(3\sin^4\alpha-cos^4\alpha=\frac{1}{2}\). Tính giá trị biểu thức A=\(2sin^4\alpha-cos\alpha\)
Bài 4) a) Cho \(\cos\alpha=\frac{2}{3}\) Tính giá trị biểu thức: A=\(\frac{tan\alpha+3cot\alpha}{tan\alpha+cot\alpha}\)

b) Cho \(\tan\alpha=3\) Tính giá trị biểu thức: B=\(\frac{sin\alpha-cos\alpha}{sin^3\alpha+3cos^3\alpha+2sin\alpha}\)

c) Cho \(\cot\alpha=\sqrt{5}\) Tính giá trị biểu thức: C=\(sin^2\alpha-sin\alpha\cdot cos\alpha+cos^2\alpha\)

Bài 5) Chứng minh các hệ thức sau:

a) \(\frac{1+sin^4\alpha-cos^4\alpha}{1-sin^6\alpha-cos^6\alpha}=\frac{2}{3cos^2\alpha}\)

b) \(\frac{sin^2\alpha\left(1+cos\alpha\right)}{cos^2\alpha\left(1+sin\alpha\right)}=\frac{sin\alpha+tan\alpha}{cos\alpha+cot\alpha}\)

c) \(\frac{tan\alpha-tan\beta}{cot\alpha-cot\beta}=tan\alpha\cdot tan\beta\)

d) \(\frac{cos^2\alpha-sin^2\alpha}{cot^2\alpha-tan^2\alpha}=sin^2\alpha\times cos^2\alpha\)

Bài 6) Cho \(cos4\alpha+2=6sin^2\alpha\) với \(\frac{\pi}{2}< \alpha< \pi\). Tính \(\tan2\alpha\)

Bài 7) Cho \(\frac{1}{tan^2\alpha}+\frac{1}{cot^2\alpha}+\frac{1}{sin^2\alpha}+\frac{1}{\cos^2\alpha}=7\). Tính \(\cos4\alpha\)

Bài 8) Chứng minh các biểu thức sau:

a) \(\sin\alpha\left(1+cos2\alpha\right)=sin2\alpha cos\alpha\)

b) \(\frac{1+sin2\alpha-cos2\alpha}{1+sin2\alpha+cos2\alpha}=tan\alpha\)

c) \(tan\alpha-\frac{1}{tan\alpha}=-\frac{2}{tan2\alpha}\)

Bài 9) Chứng minh trong mọi tam giác ABC ta đều có:

a) sinA + sinB + sinC = \(4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}\)

b) \(sin^2A+sin^2B+sin^2C=2\left(1+cosAcosBcosC\right)\)

Bài 10) Chứng minh trong mọi tam giác ABC không vuông ta đều có:

a) \(tanA+tanB+tanC=tanAtanBtanC\)

b) \(cotAcotB+cotBcotC+cotCcotA=1\)

Bài 11) Chứng minh trong mọi tam giác ABC ta đều có:

a) \(tan\frac{A}{2}tan\frac{B}{2}+tan\frac{B}{2}tan\frac{C}{2}+tan\frac{C}{2}tan\frac{A}{2}=1\)

b) \(cot\frac{A}{2}+cot\frac{B}{2}+cot\frac{C}{2}=cot\frac{A}{2}cot\frac{B}{2}cot\frac{C}{2}\)

1
30 tháng 4 2019

Help help. Tui thật sự ngu lượng giác huhu

5 tháng 11 2019

đề bài đầy đủ: rút gọn các biểu thức lượng giác sau trên điều kiện xác định của chúng:

NV
6 tháng 11 2019

\(\frac{sin^2x}{cosx+cosx.\frac{sinx}{cosx}}-\frac{cos^2x}{sinx+sinx.\frac{cosx}{sinx}}=\frac{sin^2x}{sinx+cosx}-\frac{cos^2x}{sinx+cosx}=\frac{sin^2x-cos^2x}{sinx+cosx}\)

\(=\frac{\left(sinx+cosx\right)\left(sinx-cosx\right)}{sinx+cosx}=sinx-cosx\)

\(\left(\frac{sinx}{cosx}+\frac{cosx}{1+sinx}\right)\left(\frac{cosx}{sinx}+\frac{sinx}{1+cosx}\right)=\left(\frac{sinx+sin^2x+cos^2x}{cosx\left(1+sinx\right)}\right)\left(\frac{cosx+cos^2x+sin^2x}{sinx\left(1+cosx\right)}\right)\)

\(=\left(\frac{sinx+1}{cosx\left(1+sinx\right)}\right)\left(\frac{cosx+1}{sinx\left(1+cosx\right)}\right)=\frac{1}{sinx.cosx}\)

29 tháng 4 2020

\(a,\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4sin^2x.cos^2x}=-1\)

\(VT=\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4.sin^2x.cos^2x}=\left(\frac{1}{tan2x}\right)^2-\frac{1}{sin^22x}=\left(\frac{cos2x}{sin2x}\right)^2-\frac{1}{sin^22x}=\frac{cos^22x-1}{sin^22x}=\frac{-sin^22x}{sin^22x}=-1=VP\)

b, \(VT=\frac{cos^2x-sin^2x}{sin^4x+cos^4x-sin^2x}=\frac{cos2x}{\left(sin^2x+cos^2x\right)^2-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{1-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{cos^2x-2.sin^2x.cos^2x}\)

=\(\frac{cos2x}{cos^2x.\left(1-2.sin^2x\right)}=\frac{cos2x}{cos^2x.cos2x}=\frac{1}{cos^2x}=1+tan^2x=VP\)

d, \(VT=\left(\frac{cosx}{1+sinx}+tanx\right).\left(\frac{sinx}{1+cosx}+cotx\right)=\left(\frac{cosx}{1+sinx}+\frac{sinx}{cosx}\right).\left(\frac{sinx}{1+cosx}+\frac{cosx}{sinx}\right)\)

\(=\left(\frac{cos^2x+sinx.\left(1+sinx\right)}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx.\left(1+cosx\right)}{sinx.\left(1+cosx\right)}\right)=\left(\frac{cos^2x+sinx+sin^2x}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx+cos^2x}{sinx.\left(1+cosx\right)}\right)\)

=\(\frac{1}{cosx.sinx}=VP\)

e, \(VT=cos^2x.\left(cos^2x+2sin^2x+sin^2x.tan^2x\right)=cos^2x.\left(1+sin^2x.\left(1+tan^2x\right)\right)=cos^2x.\left(1+tan^2x\right)=cos^2x.\frac{1}{cos^2x}=1=VP\)

c, \(VT=\frac{sin^2x}{cosx.\left(1+tanx\right)}-\frac{cos^2x}{sinx.\left(1+cosx\right)}=\frac{sin^3x.\left(1+cosx\right)-cos^3x.\left(1+tanx\right)}{sinx.cosx.\left(1+tanx\right).\left(1+cosx\right)}\)

=\(\frac{sin^3x+sin^3x.cotx-cos^3x-cos^3.tanx}{\left(sinx+cosx\right)^2}=\frac{sin^3x+sin^2xcosx-cos^3x-cos^2sinx}{\left(sinx+cosx\right)^2}=\frac{sin^2x.\left(sinx+cosx\right)-cos^2x.\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}\)

\(=\frac{\left(sin^2x-cos^2x\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=\frac{\left(sinx-cosx\right).\left(sinx+cosx\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=sinx-cosx=VP\)

Đây nha bạn