Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\sin^3\alpha-\cos^3\alpha}{\sin^3\alpha+\cos^3\alpha}=\frac{\frac{\sin^3\alpha}{\cos^3\alpha}-1}{\frac{\sin^3\alpha}{\cos^3\alpha}+1}=\frac{\tan^3\alpha-1}{\tan^3\alpha+1}=\frac{27-1}{27+1}=\frac{13}{14}\)
Lời giải:
Ta có: \(3=\tan a=\frac{\sin a}{\cos a}\Rightarrow \sin a=3\cos a\)
Khi đó:
\(\frac{\sin ^3a-\cos ^3a}{\sin ^3a+\cos ^3a}=\frac{(3\cos a)^3-\cos ^3a}{(3\cos a)^3+\cos ^3a}=\frac{\cos ^3a(3^3-1)}{\cos ^3a(3^3+1)}=\frac{3^3-1}{3^3+1}=\frac{13}{14}\)
Ta có đpcm.
\(M=\frac{\frac{sina}{cosa}+\frac{cosa}{cosa}}{\frac{sina}{cosa}-\frac{cosa}{cosa}}=\frac{tana+1}{tana-1}=\frac{\frac{3}{5}+1}{\frac{3}{5}-1}=...\)
\(N=\frac{\frac{sina.cosa}{cos^2a}}{\frac{sin^2a}{cos^2a}-\frac{cos^2a}{cos^2a}}=\frac{tana}{tan^2a-1}=...\) (thay số bấm máy)
\(P=\frac{\frac{sin^3a}{cos^3a}+\frac{cos^3a}{cos^3a}}{\frac{2sina.cos^2a}{cos^3a}+\frac{cosa.sin^2a}{cos^3a}}=\frac{tan^3a+1}{2tana+tan^2a}=...\)
\(\frac{cosa+sina}{cosa-sina}=\frac{1+tana}{1-tana}=\frac{1+3}{1-3}=-2\)
=>1+sina/1-sina=1+tana/1-tana=1+3/1-3=4/-2=-2