K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2018

Dùng delta đi

9 tháng 11 2018

giải giúp mk đi Mashiro Shiina

13 tháng 11 2017

Ai jup m câu này với

NV
29 tháng 2 2020

a/ \(\left[{}\begin{matrix}\Delta>0\\\left\{{}\begin{matrix}\Delta\le0\\a>0\end{matrix}\right.\end{matrix}\right.\)

b/ \(\left[{}\begin{matrix}\Delta\ge0\\\left\{{}\begin{matrix}\Delta\le0\\a>0\end{matrix}\right.\end{matrix}\right.\)

c/ \(\left[{}\begin{matrix}\Delta\ge0\\\left\{{}\begin{matrix}a< 0\\\Delta\le0\end{matrix}\right.\end{matrix}\right.\)

d/ \(\left[{}\begin{matrix}\Delta\ge0\\\left\{{}\begin{matrix}a< 0\\\Delta\ge0\end{matrix}\right.\end{matrix}\right.\)

2 tháng 4 2020

Câu 1 : a/Δ Δ = (m+2)2 - 4(-1)(-4) = m2 +2m -12
ycbt <=> Δ > 0 <=> m2 +2m-12 > 0
<=> m < -1-\(\sqrt{13}\) ; m > -1+\(\sqrt{13}\)
Vậy giá trị cần tìm m ∈ (-∞; -1-\(\sqrt{13}\) ) U (-1+\(\sqrt{13}\) ; +∞)

b/ Δ = m2 +2m-12
ycbt <=> Δ < 0 <=> m2 +2m-12 < 0
<=> -1-\(\sqrt{13}\)<m< -1+\(\sqrt{13}\)

2 tháng 4 2020

Câu 2 .
a/ Thay m=2 vào bpt ta được : 2x2+(2-1)x+1-2 >0
<=> 2x2 + x -1 > 0 <=> x < -1 ; x > \(\frac{1}{2}\)

25 tháng 7 2021

Giả sử a,b,c đều lẻ thì a = 2m+1 ; b = 2k+1 ; c = 2n+1 

Theo đề bài vì pt có no hữu tỉ nên ∆ b^2 - 4ac là số chính phương lẻ

 • Giải thích :vì no của pt sẽ là (√∆ + 2k+1) : 2(2m+1) và cx là số hữu tỉ

•Quay lại bài toán khi đó ta có : ( 2k+1)^2 - (2t+1)^2 = 4(2m+1)(2n+1) 

Biến đổi ta được : 4k(k+1) - 4t(t+1) = 4(2m+1)(2n+1) : vô lí vì vế trái CHIA HẾT cho 8 mà vế phải lại KHÔNG CHIA HẾT cho 8 

=> đpcm