K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

A C B 8cm 10cm D

\(AC^2+AB^2=BC^2\)

\(AC^2=BC^2-AB^2=10^2-8^2=36=6^2\Rightarrow AC=6\left(cm\right)\)

áp dụng tính chất đương phân giác :

\(\frac{AB}{BD}=\frac{AC}{DC}\Rightarrow\frac{8}{BD}=\frac{6}{DC}\Rightarrow\frac{BD}{DC}=\frac{8}{6}=\frac{4}{3}\)

Mà BD+DC=10(cm)

=>BD=40/7

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)

hay AC=4(cm)

Vậy: AC=4cm

b) Xét ΔABD vuông tại A và ΔEBC vuông tại E có 

\(\widehat{ABD}=\widehat{EBC}\)(BE là tia phân giác của \(\widehat{ABC}\))

Do đó: ΔABD\(\sim\)ΔEBC(g-g)

b) Xét ΔABH vuông tại H và ΔCBA vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔABH\(\sim\)ΔCBA(g-g)

Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=BC\cdot BH\)(đpcm)

20 tháng 4 2021

Có gấp thế nào đi nữa thì phải đủ dữ kiện đề tụi tớ mới giúp được cậu nhé :))

a) Áp dụng định lí Pytago vào ΔABC vuông tại A,ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

20 tháng 3 2021

Mấy câu kia thì s 

 

 

 

22 tháng 3 2021

a) \(BM=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right)\)

Tam giác ABM có MD là p/giác

\(\Rightarrow\dfrac{AD}{BD}=\dfrac{AM}{BM}=\dfrac{6}{5}\)

b) Tam giác AMC có ME là p/giác

\(\Rightarrow\dfrac{MC}{AM}=\dfrac{EC}{AE}\)

Mà: MC = BM (GT)

\(\Rightarrow\dfrac{BM}{AM}=\dfrac{EC}{AE}\)

c) Có: \(\dfrac{AD}{BD}=\dfrac{AM}{BM}\left(cmt\right)\) (1)

Tam giác AMC có ME là p/giác

\(\Rightarrow\dfrac{AE}{EC}=\dfrac{AM}{MC}\)

Mà: BM = MC (GT)

\(\Rightarrow\dfrac{AE}{EC}=\dfrac{AM}{BM}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\dfrac{AD}{BD}=\dfrac{AE}{EC}\)

=> DE // BC

a) Ta có: M là trung điểm của BC(gt)

nên \(MB=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)

Xét ΔAMB có MD là đường phân giác ứng với cạnh AB(Gt)

nên \(\dfrac{AD}{BD}=\dfrac{AM}{BM}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{BD}=\dfrac{6}{5}\)

Bài 1:Cho tam giác ABC vuông tại A có AB = 3cm ; BC = 5cm . AD là đg phân giác của tam giác ABC .  có:A. BD = 20/7 cm; CD = 15/7cm. B. BD = 15/7 cm; CD = 20/7 cmC. BD = 1,5 cm; CD = 2,5 cmD. BD = 2,5 cm; CD = 1,5 cmBài 2: Cho tâm giác ABC có BD là đg phân giác , AB = 8cm , BC = 10cm , CA = 6cm . Ta có:A. DA = 8/3 ; DC = 10/3B. DA = 10/3; DC = 8/3C. DA = 4; DC = 2D. DA = 2,5; DC = 2,5Bài 3: Cho tâm giác ABC có góc A là 120, AD là đg phân giác. Chứng minh đc...
Đọc tiếp

Bài 1:Cho tam giác ABC vuông tại A có AB = 3cm ; BC = 5cm . AD là đg phân giác của tam giác ABC .  có:

A. BD = 20/7 cm; CD = 15/7cm. 

B. BD = 15/7 cm; CD = 20/7 cm

C. BD = 1,5 cm; CD = 2,5 cm

D. BD = 2,5 cm; CD = 1,5 cm

Bài 2: Cho tâm giác ABC có BD là đg phân giác , AB = 8cm , BC = 10cm , CA = 6cm . Ta có:

A. DA = 8/3 ; DC = 10/3

B. DA = 10/3; DC = 8/3

C. DA = 4; DC = 2

D. DA = 2,5; DC = 2,5

Bài 3: Cho tâm giác ABC có góc A là 120, AD là đg phân giác. Chứng minh đc rằng:

A. 1/AB + 1/AC = 2/AD

B. 1/AD + 1/AC = 1/AB

C. 1/ AB + 1/AC = 1/AD

D. 1/AB + 1/AC = 1

Bài 4: Cho tâm giác ABC . Tia phân giác trong của góc A cắt BC tại D . Cho AB = 6, AC = x , BD = 9, BC = 21. Hãy chọn kết quả đúng về độ dài x :

A. x = 14

B. x = 12

C. x = 8

D. Một kết quả khác

Bài 5: Tâm giác ABC có cạnh AB = 15 cm , AC = 20cm, BC = 25cm. Đg phân giác của góc BAC cắt cạnh BC tại D. Vậy độ dài DB là :

A.10

B.10_5/7

C.14

D.14_2/7

Bài 6: Tam giác ABC có cạnh AB bằng 15cm, AC = 20cm, BC = 25cm. Đg phân giác góc BAC cắt BC tại D. Vậy tỉ số diện tích của 2 tâm giác ABD và ACD là:

A. 1/4

B. 1/2

C. 3/4

D.1/3

Bài 7: Độ dài các cạnh tâm giác BAC tỉ lệ với 2:3:4 BD là tâm giác trong ứng với cạnh ngắn nhất AC, chia AC thành 2 đoạn AD và CD . nếu độ dài là 10, thế thì độ dài của đoạn thẳng dài hơn trong 2 đoạn AD và CD là:

A. 3,5

B.5

C. 40/7

D.6

Bài 8: 

Cho tam giác ABC có góc B = 50 , M là trung điểm của BC . Tia phân giác của góc AMB cắt AB tại E . Tia phân giác của góc AMC cắt AC tại F. Phát biêủ nào sau đây là đúng:

A.  ME//AC

B. góc AEF = 50°

C. Góc FMC = 50°

D. MB/MA= FA/FC

Bài 9: Cho tam giác ABC vuông tại A có AB= 8cm , BC = 10cm , CD là đg phân giác. Ta chứng tỏ đc: 

A. DA = 3cm

B. DB = 5cm

C. AC = 6cm

D. Cả 3 đều đúng

   😨😨 Lm ơn giúp mk lm đc ko thời hạn là trc 7h sáng ngày 7/4 cảm ơn các bn nhiều lm

1
7 tháng 4 2020

Bài 1:Cho tam giác ABC vuông tại A có AB = 3cm ; BC = 5cm . AD là đg phân giác của tam giác ABC .  có:

A. BD = 20/7 cm; CD = 15/7cm. 

B. BD = 15/7 cm; CD = 20/7 cm

C. BD = 1,5 cm; CD = 2,5 cm

D. BD = 2,5 cm; CD = 1,5 cm

Bài 2: Cho tâm giác ABC có BD là đg phân giác , AB = 8cm , BC = 10cm , CA = 6cm . Ta có:

A. DA = 8/3 ; DC = 10/3

B. DA = 10/3; DC = 8/3

C. DA = 4; DC = 2

D. DA = 2,5; DC = 2,5

Bài 3: Cho tâm giác ABC có góc A là 120, AD là đg phân giác. Chứng minh đc rằng:

A. 1/AB + 1/AC = 2/AD

B. 1/AD + 1/AC = 1/AB

C. 1/ AB + 1/AC = 1/AD

D. 1/AB + 1/AC = 1

Bài 4: Cho tâm giác ABC . Tia phân giác trong của góc A cắt BC tại D . Cho AB = 6, AC = x , BD = 9, BC = 21. Hãy chọn kết quả đúng về độ dài x :

A. x = 14

B. x = 12

C. x = 8

D. Một kết quả khác

Bài 5: Tâm giác ABC có cạnh AB = 15 cm , AC = 20cm, BC = 25cm. Đg phân giác của góc BAC cắt cạnh BC tại D. Vậy độ dài DB là :

A.10

B.10_5/7

C.14

D.14_2/7

Bài 6: Tam giác ABC có cạnh AB bằng 15cm, AC = 20cm, BC = 25cm. Đg phân giác góc BAC cắt BC tại D. Vậy tỉ số diện tích của 2 tâm giác ABD và ACD là:

A. 1/4

B. 1/2

C. 3/4

D.1/3

Bài 7: Độ dài các cạnh tâm giác BAC tỉ lệ với 2:3:4 BD là tâm giác trong ứng với cạnh ngắn nhất AC, chia AC thành 2 đoạn AD và CD . nếu độ dài là 10, thế thì độ dài của đoạn thẳng dài hơn trong 2 đoạn AD và CD là:

A. 3,5

B.5

C. 40/7

D.6

Bài 8: 

Cho tam giác ABC có góc B = 50 , M là trung điểm của BC . Tia phân giác của góc AMB cắt AB tại E . Tia phân giác của góc AMC cắt AC tại F. Phát biêủ nào sau đây là đúng:

A.  ME//AC

B. góc AEF = 50°

C. Góc FMC = 50°

D. MB/MA= FA/FC

Bài 9: Cho tam giác ABC vuông tại A có AB= 8cm , BC = 10cm , CD là đg phân giác. Ta chứng tỏ đc: 

A. DA = 3cm

B. DB = 5cm

C. AC = 6cm

D. Cả 3 đều đúng

4 tháng 2 2016

a) ta có BD là pg => DA/DC=AB/AC=15/10=3/2

=> DA/3=DC/2=DA+DC/3+2=AC/5=15/5=3

=> DA=3.3=9 cm

DC=3.2=6 cm

b) ta có BE là pg ngoài=> EA/EC=AB/BC=15/10=3/2

=> EA/3=EC/2=EA-EC/3-2=AC/1=15/1=15

=> EC=15.2=30cm

Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/8=CD/12

=>BD/2=CD/3

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được: 

\(\dfrac{BD}{2}=\dfrac{CD}{3}=\dfrac{BD+CD}{2+3}=\dfrac{10}{5}=2\)

Do đó:BD=4(cm)

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

c: góc AED=góc BEH=90 độ-góc EBH

góc ADE=90 độ-góc ABD

góc EBH=góc ABD

=>góc AED=góc ADE

=>AE=AD