Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình bạn tự vẽ
a) Vì ΔABC vuông tại A, áp dụng định lí Pythagoras ta có :
BC2 = AB2 + AC2
=> \(AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8cm\)
Vì BD là phân giác của ^ABC nên theo tính chất đường phân giác trong tam giác ta có : AD/AB = CD/BC
Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{AD}{AB}=\frac{CD}{BC}=\frac{AD+CD}{AB+BC}=\frac{AC}{AB+BC}=\frac{8}{16}=\frac{1}{2}\)
=> \(\hept{\begin{cases}\frac{AD}{AB}=\frac{1}{2}\\\frac{CD}{BC}=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}AD=\frac{1}{2}AB=3cm\\CD=\frac{1}{2}BC=5cm\end{cases}}\)
b) Xét ΔBHA và ΔBAC có :
^B chung
^H = ^A = 900
=> ΔBHA ~ ΔBAC (g.g)
=> BH/BA = HA/AC = AB/BC
=> AB2 = BH.BC ( đpcm )
=> BH = AB2/BC = 36/10 = 3,6cm
=> HC = BC - BH = 10 - 3,6 = 6,4cm
c) Xét ΔBHI và ΔBAD có :
^H = ^A = 900
^HBI = ^ABD ( BD là phân giác của ^B )
=> ΔBHI ~ ΔBAD (g.g)
=> BH/BA = HI/AD = BI/BD
=> HI = AD.BH/AB
Vì ΔAHB vuông tại H, áp dụng định lí Pythagoras ta có :
AB2 = BH2 + AH2
=> \(AH=\sqrt{AB^2-BH^2}=\sqrt{6^2-3,6^2}=4,8cm\)
=> HI = AD.BH/AB = 3.3,6/6 = 1,8cm
=> IH.DC = 1,8 . 5 = 9cm ; AD2 = 32 = 9cm
=> IH.DC = AD2 (đpcm)
:)
3:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
HB=12^2/20=7,2cm
=>HC=20-7,2=12,8cm
\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)
a) Áp dụng định lí Py-ta-go vào ΔABC vuông tại A ta có:
\(BC^2\)= \(AB^{^{ }2}\)+\(AC^2\)=\(6^2\)+\(8^2\)= 100⇒ BC=\(\sqrt{100}\)=10 (cm)
Xét ΔABC có BD là tia phân giác \(\widehat{ABC}\) ,theo t/c ta có:
\(\dfrac{AB}{BC}\)=\(\dfrac{AD}{DC}\) ⇒\(\dfrac{DC}{BC}\)=\(\dfrac{AD}{AB}\)hay \(\dfrac{DC}{10}\)=\(\dfrac{AD}{6}\)= \(\dfrac{DC+AD}{10+6}\)=\(\dfrac{AC}{16}\)=\(\dfrac{8}{16}\)=\(\dfrac{1}{2}\)
⇒\(\left\{{}\begin{matrix}AD=6.\dfrac{1}{2}=3\left(cm\right)\\DC=10.\dfrac{1}{2}=5\left(cm\right)\end{matrix}\right.\)
a)Xét tam giác ABC vuông tại A(gt),có:
AB^2+AC^2=BC^2(Đl pytago)
Thay số:36+64=BC^2
=>BC= căn 100=10cm
Xét tam giác ABC có BD là phân giác góc ABC(gt),có:
AB/AC=AD/DC(Tính chất đường phân giác trong tam giác)
<=>AB/AB+AC=AD/AD+DC(Tính chất tỉ lệ thức)
Thay số:6/16=AD/8
<=>16AD=48
<=>AD=3cm
Vì D thuộc AC(gt)
=>AD+DC=AC
Thay số:3+DC=8
<=>DC=5cm
b) Xét tam giác ABC vuông tại A(gt),có:
SABC=(AB.AC)/2=24cm^2
Mà SABC=(AH.BC)/2
=>(AH.10)/2=24
<=>AH=24.2÷10=4,8cm
Xét tam giác ABC đồng dạng tam giác HAC có:
+Góc C chung
+Góc AHC=góc BAC=90 độ
=>tam giác ABC đồng dạng tam giác HAC(g.g)
=> AH/AB=CH/AC(Cặp cạnh tương ứng)
Thay số : 4,8/6=CH/8
=>CH=4,8.8÷6=6,4cm
c)
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=100\)
hay BC=10cm
Xét ΔABC có BD là đường phân giác ứng với cạnh AC
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)
hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)
mà AD+CD=8
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó: AD=3cm; CD=5cm
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC\(\sim\)ΔHBA
Suy ra: \(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)
hay \(AB^2=BH\cdot BC\)
c) Ta có: \(\widehat{ABD}=\widehat{DBC}\)( BD là phân giác )\(\Rightarrow90^0-\widehat{ABD}=90^0-\widehat{DBC}\Rightarrow\widehat{BIH}=\widehat{ADI}\Rightarrow\widehat{AID}=\widehat{ADI}\Rightarrow\Delta ADI\) cân tại A\(\Rightarrow AI=AD\Rightarrow\dfrac{AB}{AI}=\dfrac{AB}{AD}\)
Xét Δ ABI và Δ CBD có:
\(\widehat{BAI}=\widehat{BCD}\left(\Delta ABC\sim\Delta HBA\right)\)
\(\dfrac{AB}{AI}=\dfrac{BC}{CD}\left(=\dfrac{AB}{AD}\right)\)
\(\Rightarrow\Delta ABI\sim\Delta CBD\left(c.g.c\right)\)
d) Xét ΔABH có:
BI là tia phân giác của \(\widehat{ABH}\)
\(\Rightarrow\dfrac{IH}{IA}=\dfrac{BH}{AB}\left(1\right)\)( tính chất tia phân giác)
Xét ΔABC có:
BD là tia phân giác của \(\widehat{ABC}\)
\(\Rightarrow\dfrac{AD}{DC}=\dfrac{AB}{BC}\left(2\right)\)( tính chất tia phân giác)
Ta có: \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\left(\Delta ABC\sim\Delta HBA\right)\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow\dfrac{IH}{IA}=\dfrac{AD}{DC}\left(đpcm\right)\)
a/ \(BD\) là đường phân giác \(\widehat{BAC}\)
\(\to\dfrac{DA}{DC}=\dfrac{BA}{BC}\) hay \(\dfrac{DA}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)
\(\to\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)
\(\to\begin{cases}DA=3\\DC=5\end{cases}\)
b/ \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.AH.BC\)
\(\to AB.AC=AH.BC\)
\(\to \dfrac{AB.AC}{BC}=AH=\dfrac{6.8}{10}=3,2(cm)\)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay AH=4,8(cm)
Vậy: AH=4,8cm
cho mình hỏi là bạn có ghi sai đề hok ạ? tại vì có AD rồi, nhưng mà câu a lại nói tính AD
Xét tam giác vuông ABC có:
BC^2=AB^2+AC^2
BC^2=6^2+8^2
BC=√6^2+8^2=10cm
Xét tam giác ABC có CD phân giác:
AD/BD=AC/BC(t/chất đường phân giác )
<=>AD+BD/BD=AC+BC/BC
<=>6/BD=18/10
<=>BD=10.6/18≈3,3cm
Ta có : AD+BD=AB
=>AD=AB-BD=6-3,3=2,7
b) Xét ΔABH vuông tại H và ΔCBA vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔABH\(\sim\)ΔCBA(g-g)
Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BC\cdot BH\)(đpcm)
Có gấp thế nào đi nữa thì phải đủ dữ kiện đề tụi tớ mới giúp được cậu nhé :))