K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2018

Đáp án A.

Đặt SA = h tam giác SAB vuông tại A ⇒ A B = S A tan 60 ° = h 3 .  

Tam giác IAB vuông tại A ⇒ tan I B A ^ = I A A B ⇒ I A = h 3 .  

Khi quay tam giác SAB quay trục SA, ta được khối nón có chiều cao h, bán kính r = h 3 , 

Và quay nửa đường tròn quanh trục SA, ta được khối cầu có bán kính R = h 3 . 

Vậy V 1 = 1 3 πr 2 h = 1 3 π . h 3 2 h = πh 3 9 V 2 = 4 3 πR 2 = 4 3 π h 3 3 = 4 πh 3 81 ⇒ V 1 V 2 = 1 9 : 4 81 = 9 4 ⇒ 4 V 1 = 9 V 2 .

27 tháng 4 2018

Quay miền tam giác SAB quanh cạnh SA ta được khối nón có chiều cao h = SA , bán kính đáy R = A B .

Quay nửa hình tròn quanh cạnh SA ta được khối cầu có bán kính IA.

Áp dụng tính chất đường phân giác ta có:

Chọn D.

23 tháng 1 2018

20 tháng 7 2019

24 tháng 2 2018

Đáp án C

Chọn hệ tọa độ Oxy như hình vẽ với  O 3 ≡ O , O 2 C ≡ O x , O 2 A ≡ O y .

Ta có 

O 1 O 2 = O 1 A 2 − O 2 A 2 = 5 2 − 3 2 = 4 ⇒ O 1 − 4 ; 0 .

Phương trình đường tròn  O 1 : x + 4 2 + y 2 = 25.

Phương trình đường tròn  O 2 : x 2 + y 2 = 9.

Kí hiệu H 1  là hình phẳng giới hạn bởi các đường O 2 : x 2 + y 2 = 9,  trục Oy: x = 0  khi x ≥ 0 .

Kí hiệu H 2  là hình phẳng giới hạn bởi các đường O 2 : x 2 + y 2 = 9,  trục Oy: x=0 khi x ≥ 0 .

Khi đó thể tích V cần tìm chíình bằng thể tích   V 2 của khối tròn xoay thu được khi quay hình H 2  xung quanh trục Ox (thể tích nửa khối cầu bán kính bằng 3) trừ đi thể tích  V 1  của khối tròn xoay thu được khi quay hình  H 1  xung quanh trục Ox.

Ta có V 2 = 1 2 . 4 3 π 3 3 = 18 π  (đvtt);

V 1 = π ∫ 0 1 y 2 d x = π ∫ 0 1 25 − x + 4 2 d x = 14 π 3  (đvtt).

 Vậy V = V 2 − V 1 = 18 π − 14 π 3 = 40 π 3  (đvtt).  

4 tháng 7 2019

7 tháng 5 2017

Chọn C

Cách giải:

31 tháng 5 2018

1 tháng 7 2019

Đáp án D.

Gắn hệ trục tọa độ Oxy sao cho O 1 ≡ O  (gốc tọa độ).

Phương trình đường tròn O 1 ; 5 là  x 2 + y 2 = 5 2 ⇒ y = ± 25 − x 2 .

Tam giác O 1 O 2 A  vuông tại O 2 , có  O 1 O 2 = O 1 A 2 − O 2 A 2 = 5 2 − 3 2 = 4.

Phương trình đường tròn O 2 ; 3 là  x − 4 2 + y 2 = 9 ⇒ y = ± 9 − x − 4 2 .

Gọi V 1 là thể tích của khối tròn xoay sinh ra khi quay hình phẳng D 1 được giới hạn bởi các đường y = 9 − x − 4 2 ,   y = 0 ,   x = 4 ,   x = 7 quanh trục tung  ⇒ V 1 = π ∫ 4 7 9 − x − 4 2 d x .

Gọi V 2 là thể tích của khối tròn xoay sinh ra khi quay hình phẳng D 2 được giới hạn bởi các đường y = 25 − x 2 ,   y = 0 ,   x = 4 ,   x = 5 quanh trục tung  ⇒ V 2 = π ∫ 4 5 25 − x 2 d x .

Khi đó, thể tích cần tính là:

V = V 1 − V 2 = π ∫ 4 7 9 − x − 4 2 d x − π ∫ 4 5 25 − x 2 d x = 40 π 3 .

26 tháng 10 2019

Đáp án D

 

Khi quay mô hình đã cho quanh trục MN ta được một khối tròn xoay gồm:

- hình trụ có chiều cao là AD, đáy là hình tròn , có thể tích V 1 ;

- nửa hình cầu tâm M bán kính MA, có thể tích V 2