Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quay miền tam giác SAB quanh cạnh SA ta được khối nón có chiều cao h = SA , bán kính đáy R = A B .
Quay nửa hình tròn quanh cạnh SA ta được khối cầu có bán kính IA.
Áp dụng tính chất đường phân giác ta có:
Chọn D.
Đáp án C
Chọn hệ tọa độ Oxy như hình vẽ với O 3 ≡ O , O 2 C ≡ O x , O 2 A ≡ O y .
Ta có
O 1 O 2 = O 1 A 2 − O 2 A 2 = 5 2 − 3 2 = 4 ⇒ O 1 − 4 ; 0 .
Phương trình đường tròn O 1 : x + 4 2 + y 2 = 25.
Phương trình đường tròn O 2 : x 2 + y 2 = 9.
Kí hiệu H 1 là hình phẳng giới hạn bởi các đường O 2 : x 2 + y 2 = 9, trục Oy: x = 0 khi x ≥ 0 .
Kí hiệu H 2 là hình phẳng giới hạn bởi các đường O 2 : x 2 + y 2 = 9, trục Oy: x=0 khi x ≥ 0 .
Khi đó thể tích V cần tìm chíình bằng thể tích V 2 của khối tròn xoay thu được khi quay hình H 2 xung quanh trục Ox (thể tích nửa khối cầu bán kính bằng 3) trừ đi thể tích V 1 của khối tròn xoay thu được khi quay hình H 1 xung quanh trục Ox.
Ta có V 2 = 1 2 . 4 3 π 3 3 = 18 π (đvtt);
V 1 = π ∫ 0 1 y 2 d x = π ∫ 0 1 25 − x + 4 2 d x = 14 π 3 (đvtt).
Vậy V = V 2 − V 1 = 18 π − 14 π 3 = 40 π 3 (đvtt).
Đáp án D.
Gắn hệ trục tọa độ Oxy sao cho O 1 ≡ O (gốc tọa độ).
Phương trình đường tròn O 1 ; 5 là x 2 + y 2 = 5 2 ⇒ y = ± 25 − x 2 .
Tam giác O 1 O 2 A vuông tại O 2 , có O 1 O 2 = O 1 A 2 − O 2 A 2 = 5 2 − 3 2 = 4.
Phương trình đường tròn O 2 ; 3 là x − 4 2 + y 2 = 9 ⇒ y = ± 9 − x − 4 2 .
Gọi V 1 là thể tích của khối tròn xoay sinh ra khi quay hình phẳng D 1 được giới hạn bởi các đường y = 9 − x − 4 2 , y = 0 , x = 4 , x = 7 quanh trục tung ⇒ V 1 = π ∫ 4 7 9 − x − 4 2 d x .
Gọi V 2 là thể tích của khối tròn xoay sinh ra khi quay hình phẳng D 2 được giới hạn bởi các đường y = 25 − x 2 , y = 0 , x = 4 , x = 5 quanh trục tung ⇒ V 2 = π ∫ 4 5 25 − x 2 d x .
Khi đó, thể tích cần tính là:
V = V 1 − V 2 = π ∫ 4 7 9 − x − 4 2 d x − π ∫ 4 5 25 − x 2 d x = 40 π 3 .
Đáp án D
Khi quay mô hình đã cho quanh trục MN ta được một khối tròn xoay gồm:
- hình trụ có chiều cao là AD, đáy là hình tròn , có thể tích V 1 ;
- nửa hình cầu tâm M bán kính MA, có thể tích V 2
Đáp án A.
Đặt SA = h tam giác SAB vuông tại A ⇒ A B = S A tan 60 ° = h 3 .
Tam giác IAB vuông tại A ⇒ tan I B A ^ = I A A B ⇒ I A = h 3 .
Khi quay tam giác SAB quay trục SA, ta được khối nón có chiều cao h, bán kính r = h 3 ,
Và quay nửa đường tròn quanh trục SA, ta được khối cầu có bán kính R = h 3 .
Vậy V 1 = 1 3 πr 2 h = 1 3 π . h 3 2 h = πh 3 9 V 2 = 4 3 πR 2 = 4 3 π h 3 3 = 4 πh 3 81 ⇒ V 1 V 2 = 1 9 : 4 81 = 9 4 ⇒ 4 V 1 = 9 V 2 .