Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BFED có
ED//BF
FE//BD
Do đó: BFED là hình bình hành
Xét ΔABC có
D là trung điểm của BC
DE//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
E là trung điểm của AC
EF//CB
Do đó: F là trung điểm của AB
Xét ΔCDE và ΔEFA có
CD=EF
DE=FA
CE=EA
Do đó: ΔCDE=ΔEFA
b: Gọi ΔABC có F là trung điểm của AB,E là trung điểm của AC
Trên tia FE lấy điểm E sao cho E là trung điểm của FK
Xét tứ giác AFCK có
E là trung điểm của AC
E là trung điểm của FK
Do đó: AFCK là hình bình hành
Suy ra: AF//KC và KC=AF
hay KC//FB và KC=FB
Xét tứ giác BFKC có
KC//FB
KC=FB
Do đó: BFKC là hình bình hành
Suy ra: FE//BC(ĐPCM)
D là TĐ của AB mà DE //BC nên DE là đg TB của tam giác ABC -->E là TĐ của AC.
E là TĐ của AC mà EF //AB nên EF là đg TB của tam giác CAB--->F là TĐ của BC
ta có: EF//BD
FB//ED
suy ra; EB=ED; EF=BD
mà DB=DC suy ra EF=DC
6F1=^B( 2 góc đồng vị)
^B=^D1( 2 góc đồng vị)
suy ra ^F1=^D1
ta có: ^E1=^D2(2 góc đồng vị)
^C=^D2( 2 góc đồng vị)
suy ra ^E1=^C
xét tam giác CDE và tam giác EFA có:
EF=DC(cmt)
^F1=^D1(cmt)
^E1=^C(cmt)
suy ra tam giác CDE=tam giác EFA(g.c.g)
ta có: EF//BD
FB//ED
suy ra; EB=ED; EF=BD
mà DB=DC suy ra EF=DC
6F1=^B( 2 góc đồng vị)
^B=^D1( 2 góc đồng vị)
suy ra ^F1=^D1
ta có: ^E1=^D2(2 góc đồng vị)
^C=^D2( 2 góc đồng vị)
suy ra ^E1=^C
xét tam giác CDE và tam giác EFA có:
EF=DC(cmt)
^F1=^D1(cmt)
^E1=^C(cmt)
suy ra tam giác CDE=tam giác EFA(g.c.g)
a) Co E la trung diem cua AC, FE//BC suy ra F la trung diem AB(duong trung binh )
Co E la trung diem AC, ED//AB suy ra D la trung diem BC(duong trung binh)
b) Co F la trung diem AB (cmt), D la trung diem BC (cmt) suy ra FD la duong trung binh cua tam giac ABC
suy ra FD//=1/2 AC (t/c duong trung binh)
chứng minh đó, bọn bây đui hết rồi ak, đừng ns kết quả ra nữa, ttốn giấy mực olm, đứa nào ko lm ra thì biến
a) \(\Delta\)AEF=\(\Delta\)ECD ( g-c-g) => EF= CD ; DE = AF
\(\Delta\)BFD = \(\Delta\)EDF ( g-c-g) => BF = DE ; BD = EF
=> AF = BE ; BD=CD => dpcm
b) theo a) => DF là đường TB của \(\Delta\) ABC => dpcm
a) TA CÓ :EF//AB
suy ra : góc AEF=gócECD (1)
ED // AB
suy ra :gócCED =gócEAF (2)
TA CÓ :AE = EC (gt) (3)
từ 1,2,3 suy ra tam giác FAE=DEC
suy ra AF=ED (4) và EF=DC (5)
theo bai ta co :ED//AB mà Fthuộc AB nên ED//FB
EF//BC mà Dthuộc BCnên EF//BD
từ trên ta suy ra EFBD là hinh bình hành
suy ra BF=ED (6) và EF=BD (7)
từ 4,6 suy ra AF =BF hay Flà trung điểm của AB
Từ 5,7 suy ra BD=DC hay Dlà trung điểm của BC
b) ta có :AF=DE (câu a) và AF//ED
nên suy ra :AFDE là hình bình hành
suy ra FD//AE (đpcm) và FD=AE
mà AE=EC=1/2AC
nên FD=1/2AC (đpcm)
***tick cho mik nhé **!!!
+)Xét tam giác BDF và ∆EFD có:
DF chung
∠BDF = ∠DFE ( hai góc so le trong; BC// EF)
∠BFD = ∠FDE ( hai góc so le trong; DE// AB)
Suy ra:∆ BDF = ∆EFD (g.c.g)
Suy ra BD = EF. Theo giả thiết, D là trung điểm của BC nên CD = DB = EF.
+) Xét ∆ CDE và ∆ EFA có :
CD = EF ( chứng minh trên)
∠(CDE) = ∠(EFA) = ∠(CBA)
∠(ECD) = ∠(AEF) (các góc đồng vị).
Suy ra: ∆ CDE = ∆ EFA ( g.c.g)
Suy ra CE = EA nên E là trung điểm của CD.