K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BFED có 

ED//BF

FE//BD

Do đó: BFED là hình bình hành

Xét ΔABC có

D là trung điểm của BC

DE//AB

Do đó: E là trung điểm của AC

Xét ΔABC có 

E là trung điểm của AC

EF//CB

Do đó: F là trung điểm của AB

Xét ΔCDE và ΔEFA có 

CD=EF

DE=FA

CE=EA

Do đó: ΔCDE=ΔEFA

b: Gọi ΔABC có F là trung điểm của AB,E là trung điểm của AC

Trên tia FE lấy điểm E sao cho E là trung điểm của FK

Xét tứ giác AFCK có 

E là trung điểm của AC

E là trung điểm của FK

Do đó: AFCK là hình bình hành

Suy ra: AF//KC và KC=AF

hay KC//FB và KC=FB

Xét tứ giác BFKC có 

KC//FB

KC=FB

Do đó: BFKC là hình bình hành

Suy ra: FE//BC(ĐPCM)

10 tháng 12 2018

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

+)Xét tam giác BDF và ∆EFD có:

DF chung

∠BDF = ∠DFE ( hai góc so le trong; BC// EF)

∠BFD = ∠FDE ( hai góc so le trong; DE// AB)

Suy ra:∆ BDF = ∆EFD (g.c.g)

Suy ra BD = EF. Theo giả thiết, D là trung điểm của BC nên CD = DB = EF.

+) Xét ∆ CDE và ∆ EFA có :

CD = EF ( chứng minh trên)

∠(CDE) = ∠(EFA) = ∠(CBA)

∠(ECD) = ∠(AEF) (các góc đồng vị).

Suy ra: ∆ CDE = ∆ EFA ( g.c.g)

Suy ra CE = EA nên E là trung điểm của CD.

22 tháng 3 2016

A B C F E a 1 1 1 D 2

ta có: EF//BD

FB//ED 

suy ra; EB=ED; EF=BD

mà DB=DC suy ra EF=DC

6F1=^B( 2 góc đồng vị)

^B=^D1( 2 góc đồng vị)

suy ra ^F1=^D1

ta có: ^E1=^D2(2 góc đồng vị)

^C=^D2( 2 góc đồng vị)

suy ra ^E1=^C

xét tam giác CDE và tam giác EFA có:

EF=DC(cmt)

^F1=^D1(cmt)

^E1=^C(cmt)

suy ra tam giác CDE=tam giác EFA(g.c.g)

22 tháng 3 2016

ta có: EF//BD

FB//ED 

suy ra; EB=ED; EF=BD

mà DB=DC suy ra EF=DC

6F1=^B( 2 góc đồng vị)

^B=^D1( 2 góc đồng vị)

suy ra ^F1=^D1

ta có: ^E1=^D2(2 góc đồng vị)

^C=^D2( 2 góc đồng vị)

suy ra ^E1=^C

xét tam giác CDE và tam giác EFA có:

EF=DC(cmt)

^F1=^D1(cmt)

^E1=^C(cmt)

suy ra tam giác CDE=tam giác EFA(g.c.g)

19 tháng 11 2016

A B C E F D

a) Co E la trung diem cua AC, FE//BC suy ra F la trung diem AB(duong trung binh )

Co E la trung diem AC, ED//AB suy ra D la trung diem BC(duong trung binh)

b) Co F la trung diem AB (cmt), D la trung diem BC (cmt) suy ra FD la duong trung binh cua tam giac ABC

suy ra FD//=1/2 AC (t/c duong trung binh)

17 tháng 12 2019

A F E D B M C

a) Xét \(\Delta\)DMB và \(\Delta\)DMC có:

DM chung 

^DMB = ^DMC ( = 1v )

BM = MC ( M là trung điểm BC ) 

=> \(\Delta\)DMB = \(\Delta\)DMC ( c. g. c)

b) Từ (a) => ^DCM = ^DBM  => ^ACB = ^EBC ( 1)

=> ^EAD = ^ACB = ^EBC = ^AED ( so le trong; AE// BC )

=> \(\Delta\)ADE cân tại D 

=> DA = DE mà từ (a) => DB = DC 

=> BE = AC ( 2)

Từ (1); (2)  và cạnh BC chung 

=> \(\Delta\)BEC = \(\Delta\)CAB.( c. g.c)

19 tháng 12 2020

Cứng đờ tay luôn rồi, khổ quá:((

a) Xét \(\Delta DBF\) và \(\Delta FED:\)

DF:cạnh chung

\(\widehat{BDF}=\widehat{EFD}\)(AB//EF)

\(\widehat{BFD}=\widehat{EDF}\)(DE//BC)

=> \(\Delta BDF=\Delta EFD\left(g-c-g\right)\)

b) (Ở lớp 8 thì sé có cái đường trung bình ý bạn, nó sẽ có tính chất luôn, nhưng lớp 7 chưa học đành làm theo lớp 7 vậy)

Ta có: \(\widehat{DAE}+\widehat{AED}+\widehat{EDA}=180^o\) (Tổng 3 góc trong 1 tam giác)

Lại có: \(\widehat{AED}+\widehat{DEF}+\widehat{FEC}=180^o\)  

Mà \(\widehat{DEF}=\widehat{EDA}\)(AB//EF)

=>\(\widehat{DAE}=\widehat{FEC}\)

Xét \(\Delta DAE\) và \(\Delta FEC:\)

DA=FE(=BD)

\(\widehat{DAE}=\widehat{EFC}\left(=\widehat{DBF}\right)\)

\(\widehat{DAE}=\widehat{FEC}\) (cmt)

=>\(\Delta DAE=\Delta FEC\left(g-c-g\right)\)

=> DE=FC(2 cạnh t/ứ)

=> Đpcm

 

8 tháng 3 2017

Vì điểm I cách đều ba cạnh của tam giác ABC và nằm trong tam giác nên I là giao điểm của ba đường phân giác của tam giác ABC, tức là BI, CI lần lượt là tia phân giác của góc N và góc C. Do EF // BC nên ∠B1= ∠I1(so le trong), suy ra ∠I2 = ∠B2 .

Suy ra: BI, CI lần lượt là tia phân giác của góc B và góc C.

Do EF // BC nên ∠B1 = ∠BIE (so le trong).

Lại có: ∠B1 = ∠B2 ( vì BI là tia phân giác của góc B )

Suy ra: ∠B2 = ∠BIE

Vậy EF = EI + IF = BE + CF.