K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tham khảo:

undefined

14 tháng 12 2017

Lời giải bạn Thanh đúng rồi, mình vẽ hình và trình bày lại cho rõ hơn như sau:

A B C M D E I K

a) Do D và M đối xứng qua AB nên AD = AM

         E và M đối xứng qua AC nên AE = AM

=> AD = AE (vì cùng bằng AM)

b) Theo câu a) thì AD = AE nên tam giác ADE cân => \(\widehat{ADE}=\widehat{AED}\) (1)

tam giác AID = tam giác AIM t(trường hợp CGC) vì có AI chung, AD = AM, \(\widehat{DAI}=\widehat{IAM}\)

=> \(\widehat{ADI}=\widehat{AMI}\)    (2)

Tương tự: \(\widehat{AEK}=\widehat{AMK}\)    (3)

Từ (1), (2) và (3) suy ra \(\widehat{AMI}=\widehat{AMK}\) +> AM là phân giác góc \(\widehat{IMK}\)

c) Ta có: \(\widehat{DAB}=\widehat{MAB}\) , \(\widehat{EAC}=\widehat{MAC}\) (do tính chất đối xứng)

=> \(\widehat{DAE}=2.\widehat{BAC}\) là đại lượng không đổi khi M di chuyển trên BC.

=> \(DE^2=AD^2+AE^2-2.AD.AE.\cos\widehat{DAE}\)

Mà AD = AE = AM

=> \(DE^2=AM^2+AM^2-2.AM.AM.\cos\left(2.\widehat{BAC}\right)\)

               \(=2.AM^2\left[1-\cos2\widehat{BAC}\right]\)

=> DE nhỏ nhất khi AM nhỏ nhất => M là chân đường cao hạ từ A xuống BC

14 tháng 10 2016

BAI NAY DE QUA  NHO K DUNG NHA !

cau a

vi D,M  doi xung nen tam giac ADM co AD=AM

cmtt voi tam giac AME nen co AM=AE

tu do co AD=AE

cau b

cm tam AIK=tam giac AIM do chung AD;AD=AM;DAI=MAI

nen goc AID= goc AMI

CMTT VOI tam giacAKM va AKE CO AMK=AEK

co AD = AE NEN TAM GIAC ADE CAN NE ADI=AEK

TU LAM NOT CAU C GOI Y AM LA DUONG CAO THI DE NHO NHAT

Tham khảo:

undefined

14 tháng 12 2017

Bạn xem lời giải ở đườn link sau nhé

Câu hỏi của Nguyễn Thị Thùy - Toán lớp 8 - Học toán với OnlineMath

14 tháng 12 2017

Bạn tham khảo ở đây:

Câu hỏi của Nguyễn Thị Thùy - Toán lớp 8 - Học toán với OnlineMath

14 tháng 12 2017

Bạn xem lời giải ở đường link sau nhé

Câu hỏi của Nguyễn Thị Thùy - Toán lớp 8 - Học toán với OnlineMath

14 tháng 12 2017

Bạn xem ở đây nhé:

Câu hỏi của Nguyễn Thị Thùy - Toán lớp 8 - Học toán với OnlineMath

14 tháng 12 2017

ABCMDEIK

Ta có: \(\widehat{DAB}=\widehat{MAB}\) , \(\widehat{EAC}=\widehat{MAC}\) (do tính chất đối xứng)

=> \(\widehat{DAE}=2.\widehat{BAC}\) là đại lượng không đổi khi M di chuyển trên BC.

=> \(DE^2=AD^2+AE^2-2.AD.AE.\cos\widehat{DAE}\)

Mà AD = AE = AM

=> \(DE^2=AM^2+AM^2-2.AM.AM.\cos\left(2.\widehat{BAC}\right)\)

               \(=2.AM^2\left[1-\cos2\widehat{BAC}\right]\)

=> DE nhỏ nhất khi AM nhỏ nhất => M là chân đường cao hạ từ A xuống BC

1 tháng 8 2018

a.Tam giác AMD có AB vừa là đường trung tuyến vừa là đường cao

=> Tam giác AMD cân tại A

=> AB cũng đồng thời là đường phân giác của tam giác AMD

=> góc MAB = góc BAD                           

Tương tự ta CM được AC là đường trung tuyến của tam giác AME

=> góc CAM = góc CAE

=> \(\widehat{DAE}=\widehat{MAB}+\widehat{BAD}+\widehat{CAM}+\widehat{CAE}\)\(=2\widehat{BAC}=140\sigma\)

b.Tam giác IMD có IB vừa là đường cao vừa là đường trung tuyến 

=> IB là đường phân giác của góc DIM

=> IB là đường phân giác ngoài của tam giác IMK

Tương tự ta có : IC là đường phân giác của góc MKE

=> IC là đường phân giác ngoài của tam giác IMK

Tam giác IMK có 2 đường phân giác ngoài kẻ từ I và K cắt nhau tại A

=> MA là đường phân giác trong của tam giác IMK

=> MA là đường phân giác của góc IMK

c.Tam giác ADM cân tại A => AD=AM

Tam giác AEM cân tại A => AE=AM

=> AD=AE => tam giác ADE cân tại A

Tam giác ADE cân tại A có góc ở đỉnh DAE ko đổi ( = 2* góc ABC )

=> Cạnh đáy DE có đọ dài nhỏ nhất khi cạnh bên AD có độ dài nhỏ nhất

=> AM có độ dài nhỏ nhất 

=> AM là đường cao của tam giác ABC 

=> M là chân đường cao kẻ từ A xuống BC